1

Studio della Nova Delphini 2013 (PNV J20233073+2046041)

ARTICOLI DI ASTRONOMIA AMATORIALE
VOLUME 2 NUMERO 3 (2013)

ABSTRACT

La Nova Delphini 2013 è stata scoperta il 14 Agosto 2013 dall’astrofilo giapponese Koichi Itagaki ed è tutt’ora visibile con binocoli e piccoli telescopi nella costellazione del Delfino. Il massimo di luminosità della nova, pari a magnitudine +4.3, è stato raggiunto il 16 Agosto 2013. In questo articolo riportiamo le immagini della Nova Delphini 2013 riprese da Briosco il giorno 17 Agosto 2013, nonché la misura dello spettro elettromagnetico della stessa effettuata il giorno seguente mediante un reticolo di diffrazione tipo StarAnalyser 100 (100 linee/mm). Questa misura ci ha permesso di classificare Nova Delphini 2013 come una nova di tipo Fe II e di valutare, tramite l’allargamento Doppler delle linee di emissione HI presenti, la velocità di espansione della nebulosa associata pari a 1621 km/s.

SCARICA L’ARTICOLO IN FORMATO PDF




Spettroscopia con un reticolo di diffrazione: le linee telluriche

ARTICOLI DI ASTRONOMIA AMATORIALE
VOLUME 2 NUMERO 2 (2013)

ABSTRACT

In questo articolo sono riportate le misure di lunghezza d’onda delle linee telluriche (più correttamente bande telluriche) effettuate su quattro stelle di tipo B. In particolare vengono considerare le linee relative all’assorbimento dell’Ossigeno (bande A e B) e delle molecole d’acqua presenti nell’atmosfera terrestre. Ricordiamo infine che la banda A dell’Ossigeno è utilizzata per il processo di seconda calibrazione degli spettri stellari in quanto le misure non sono generalmente soggette a spostamenti Doppler. In caso contrario tale linea dovrà essere esclusa dal processo di seconda calibrazione.

SCARICA L’ARTICOLO IN FORMATO PDF




Misura della linea tellurica O2(6870Å)

ARTICOLI DI ASTRONOMIA AMATORIALE
VOLUME 2 NUMERO 1 (2013)

ABSTRACT

Lo spettro elettromagnetico di una stella è caratterizzato da linee di emissione ed assorbimento. Per quanto concerne le seconde è possibile distinguere tra righe di origine stellare e quelle dovute all’assorbimento della radiazione elettromagnetica ad opera delle molecole presenti nell’atmosfera terrestre. Tali linee prendono il nome di linee telluriche e la loro individuazione risulta di fondamentale importanza al fine di ottenere un’analisi spettroscopica corretta. In questo articolo riportiamo la misura della linea tellurica O2(6870Å) effettuata su un campione di quattro stelle di tipo B.

SCARICA L’ARTICOLO IN FORMATO PDF




B8-βOri (Rigel)

La stella β della costellazione di Orione è di tipo B8 Iab e si trova a 860 A.L. dalla nostra stella. Questa ruota su se stessa con una velocità di circa 43 km/s. La stella è una supergigante blu con temperatura stimata è intorno ai 12’000 K.

L’immagine in figura rappresenta lo spettro di βOri ripresa il giorno 19 Dicembre 2012 alle ore 23.24 (TMEC) da Briosco (MB) con un telescopio Newton SkyWatcher 200mm f/4 + reticolo di diffrazione StarAnalyser 100 + camera Magzero MZ-5m. Di seguito è riportato l’istogramma dellla regione di interesse. L’offset ottenuto tramite fit gaussiano è 103.735 pixel. La massima luminosità è raggiunta per lunghezze d’onda pari a 5271.8 Å. Scarica il file di testo della misura.

Spettro di assorbimento non calibrato (Visual Spec)

A questo punto si è proceduto alla realizzazione dello spettro MAX-assorbimento al fine di semplificare le future operazioni di fit. Effettuando un fit gaussiano sui picchi otteniamo:

  • 3958.7 Å  linea Hε dell’HI (3969.7 Å)
  • 4084.7 Å linea Hδ dell’HI (4101.3 Å)
  • 4332.9 Å linea Hγ dell’HI (4340.0 Å)
  • 4844.2 Å linea Hβ dell’HI (4860.8 Å)
  • 4902.9 Å
  • 5187.5 Å
  • 6781.8 Å
  • 5841.3 Å
  • 5897.4 Å
  • 6246.4 Å
  • 6841.0 Å
  • 7577.8 Å

 

La stessa stella è stata ripresa con il medesimo setup anche allre ore 23.24 (TMEC). L’offset ottenuto tramite fit gaussiano è 23.1432 pixel. La massima luminosità è raggiunta per lunghezze d’onda pari a 5288.1 Å. Scarica il file di testo della misura.

Spettro di assorbimento non calibrato (Visual Spec)

  • 4336.4 Å linea Hγ dell’HI (4340.0 Å)
  • 4853.9 Å linea Hβ dell’HI (4860.8 Å)
  • 4902.0 Å
  • 5081.0 Å
  • 5179.4 Å
  • 5460.9 Å
  • 5772.5 Å
  • 5869.6 Å
  • 6256.2 Å
  • 6663.7 Å
  • 6856.4 Å
  • 7162.8 Å
  • 7274.7 Å
  • 7591.3 Å
  • 8199.8 Å



B2-ζTau

La stella ζ della costellazione del Toro è un sistema binario di cui la principale è una gigante blu di tipo B2 IIIpe situato a 417 A.L. dalla nostra stella. La principale è anche una stella Be e ruota su se stessa con una velocità di circa 20 km/s. La temperatura stimata è intorno ai 19’340 K.

L’immagine in figura rappresenta lo spettro di ζTau ripresa il giorno 19 Dicembre 2012 alle ore 23.14 (TMEC) da Briosco (MB) con un telescopio Newton SkyWatcher 200mm f/4 + reticolo di diffrazione StarAnalyser 100 + camera Magzero MZ-5m. Di seguito è riportato l’istogramma dellla regione di interesse. L’offset ottenuto tramite fit gaussiano è 21.2611 pixel. La massima luminosità è raggiunta per lunghezze d’onda pari a 4969.0 Å. Scarica il file di testo della misura.

Spettro di assorbimento non calibrato (Visual Spec)

A questo punto si è proceduto alla realizzazione dello spettro MAX-assorbimento al fine di semplificare le future operazioni di fit. Effettuando un fit gaussiano sui picchi otteniamo:

  • 3873.2 Å linea Hζ dell’HI (3888.6 Å)
  • 3957.7 Å linea Hε dell’HI (3969.7 Å)
  • 4089.5 Å linea Hδ dell’HI (4101.3 Å)
  • 4329.2 Å linea Hγ dell’HI (4340.0 Å)
  • 4374.6 Å
  • 4454.5 Å
  • 4545.1 Å
  • 4626.6 Å
  • 4846.8 Å linea Hβ dell’HI (4860.8 Å)
  • 4906.1 Å
  • 4994.6 Å
  • 5188.9 Å
  • 5278.8 Å
  • 5444.6 Å
  • 5774.8 Å
  • 5859.6 Å
  • 6494.1 Å
  • 6650.2 Å
  • 6857.0 Å
  • 7162.5 Å
  • 7261.0 Å
  • 7580.9 Å
  • 7747.8 Å
  • 8215.4 Å



B2-γOri (Bellatrix)

La stella γ della costellazione di Orione è di tipo B2 III e si trova tra 240 A.L. dalla nostra stella. Questa ruota su se stessa con una velocità di circa 50 km/s. La stella è una gigante blu anche se l’assegnazione a questa categoria di stelle è ancora controversa. La temperatura stimata è intorno ai 22’000 K.

L’immagine in figura rappresenta lo spettro di γOri ripresa il giorno 19 Dicembre 2012 alle ore 23.19 (TMEC) da Briosco (MB) con un telescopio Newton SkyWatcher 200mm f/4 + reticolo di diffrazione StarAnalyser 100 + camera Magzero MZ-5m. Di seguito è riportato l’istogramma dellla regione di interesse. L’offset ottenuto tramite fit gaussiano è 28.3933 pixel. La massima luminosità è raggiunta per lunghezze d’onda pari a 5275.3 Å. Scarica il file di testo della misura.

Spettro di assorbimento non calibrato (Visual Spec)

A questo punto si è proceduto alla realizzazione dello spettro MAX-assorbimento al fine di semplificare le future operazioni di fit. Effettuando un fit gaussiano sui picchi otteniamo:

  • 3882.5 Å linea Hζ dell’HI (3888.6 Å)
  • 3968.2 Å linea Hε dell’HI (3969.7 Å)
  • 4099.0 Å linea Hδ dell’HI (4101.3 Å)
  • 4338.7 Å linea Hγ dell’HI (4340.0 Å)
  • 4466.8 Å
  • 4527.9 Å
  • 4549.0 Å
  • 4633.0 Å
  • 4856.6 Å linea Hβ dell’HI (4860.8 Å)
  • 4912.1 Å
  • 5189.7 Å
  • 5781.2 Å
  • 5864.4 Å
  • 6553.7 Å linea Hα dell’HI (6562.1 Å)
  • 6656.4 Å
  • 6865.1 Å
  • 7170.1 Å
  • 7592.7 Å
  • 8183.4 Å



B0-εOri (Alnilam)

La stella ε della costellazione di Orione è di tipo B0 Iab e si trova tra 1’300 e 1’600 A.L. dalla nostra stella. Questa ruota su se stessa con una velocità di circa 25.9 km/s. La stella è una supergigante blu molto calda e molto luminosa. La temperatura stimata è intorno ai 28’500 K.

L’immagine in figura rappresenta lo spettro di εOri ripresa il giorno 19 Dicembre 2012 alle ore 23.29 (TMEC) da Briosco (MB) con un telescopio Newton SkyWatcher 200mm f/4 + reticolo di diffrazione StarAnalyser 100 + camera Magzero MZ-5m. Di seguito è riportato l’istogramma dellla regione di interesse. L’offset ottenuto tramite fit gaussiano è 25.8346 pixel. La massima luminosità è raggiunta per lunghezze d’onda pari a 5301.6 Å. Scarica il file di testo della misura.

Spettro di assorbimento non calibrato (Visual Spec)

 A questo punto si è proceduto alla realizzazione dello spettro MAX-assorbimento al fine di semplificare le future operazioni di fit. Effettuando un fit gaussiano sui picchi otteniamo:

  • 3969.2 Å linea Hε dell’HI (3969.7 Å)
  • 4094.4 Å linea Hδ dell’HI (4101.3 Å)
  • 4347.2 Å linea Hγ dell’HI (4340.0 Å)
  • 4470.2 Å
  • 4649.8 Å
  • 4864.1 Å linea Hβ dell’HI (4860.8 Å)
  • 4926.3 Å
  • 5049.6 Å
  • 5201.1 Å
  • 5455.5 Å
  • 5487.5 Å
  • 5579.4 Å
  • 5778.0 Å
  • 5868.1 Å
  • 6264.8 Å
  • 6661.8 Å
  • 6866.0 Å
  • 7175.0 Å
  • 7266.4 Å
  • 7600.2 Å

La stessa stella è stata ripresa con il medesimo setup anche allre ore 23.30 (TMEC). L’offset ottenuto tramite fit gaussiano è 31.9885 pixel. La massima luminosità è raggiunta per lunghezze d’onda pari a5279.5 Å. Scarica il file di testo della misura.

Spettro di assorbimento non calibrato (Visual Spec)

A questo punto si è proceduto alla realizzazione dello spettro MAX-assorbimento al fine di semplificare le future operazioni di fit. Effettuando un fit gaussiano sui picchi otteniamo:

  • 4337.0 Å linea Hγ dell’HI (4340.0 Å)
  • 4453.9 Å
  • 4639.0 Å
  • 4854.0 Å linea Hβ dell’HI (4860.8 Å)
  • 4908.6 Å
  • 5196.1 Å
  • 5464.6 Å
  • 5775.7 Å
  • 5864.3 Å
  • 6223.1 Å
  • 6255.8 Å
  • 6654.4 Å
  • 6861.1 Å
  • 7166.1 Å
  • 7590.6 Å



Efficienza Quantica

Nell’articolo Il fotoelemento: fotodiodo e photogateabbiamo visto come un fotone di lunghezza d’onda compresa tra 350 e 1100 nm ha una certa probabilità di venir “convertito” in elettroni liberi. Ovviamente quanto detto è un concetto generale che in questo post andremo ad approfondire più dettagliatamente. In primo luogo ricordiamo che il limite a bassa lunghezza d’onda è fissato dalla riflessione dei fotoni incidenti sul Silicio che compone il fotoelemento mentre quello ad alta lunghezza d’onda è fissato dall’energy gap del materiale. A lunghezze d’onda inferiori e superiori il Silicio diviene praticamente trasparente (riflettente) alla radiazione luminosa.

Nell’articolo E’ questione di elettroni abbiamo detto che se un fotone si trova nel range di lunghezze d’onda appropriato, questo verrà assorbito dal fotoelemento. Questo è vero se lo spessore del Silicio fosse infinito. Infatti un fotone di lunghezza d’onda λ ha una determinata probabilità P di essere assorbito da uno spessore d di Silicio. Per un fotoelemento, tale probabilità è generalmente inferiore al 100% e aumenta all’aumentare di d. Questo spiega perché i sensori retroilluminati (più spessi) sono anche quelli più sensibili alla radiazione luminosa.

Ora, P(λ) rappresenta veramente la probabilità che un fotone di lunghezza d’onda λ venga registrato dal nostro sensore, sia esso di tipo CCD o CMOS? Ovviamente no. Infatti P(λ) non tiene in considerazione la geometria del fotoelemento, la capacità di raccogliere la carica depositata e molti altri fattori. La grandezza fisica che raccoglie tutte queste informazioni è detta efficienza quantica QE. Ovviamente QE è funzione di λ e riflette complessivamente l’andamento di P(λ).

L’efficienza quantica, per definizione, è riferita ad un singolo fotoelemento e quindi è un concetto generalizzabile ad un sensore a patto di considerare la risposta di ciascun pixel alla luce identica. Inoltre la risposta del Silicio alla luce dipende dalla temperatura dello stesso ed in particolare si ha una riduzione di QE al diminuire della temperatura di funzionamento. Quindi non è sempre detto che un Silicio funziona tanto meglio quanto raffreddato (si veda l’articolo “Il dark frame”).

Al fine di migliorare l’assorbimento della luce, solitamente viene posto uno strato antiriflesso di fronte al fotoelemento.

Nel caso delle DSLR è necessario prendere in considerazione anche la presenza dei filtri interposti nel cammino ottico. In particolare il filtro IR-cut posto di fronte al sensore e la matrice di filtri colorati RGB. Ecco quindi che rivenditori, come ad esempio Nikon o Canon, forniscono per ogni fotocamera digitale tre curve di efficienza quantica, una per ciascun filtro colorato.

In figura 1 riportiamo l’efficienza quantica dell’occhio umano, di un sensore CCD (Atik 314L+ monocromatica), di un sensore CMOS (Magzero MZ-5m) e di una reflex digitale (sensore CMOS Canon EOS 40D) con e senza modifica Baader.

Figura 1: confronto tra efficienze quantiche di diversi strumenti per la visione/ripresa notturna.




A0-θAur (Mahasim o Bogardus)

La stella θ della costellazione dell’Auriga è un sistema binario di cui la componente più luminosa di classe spettrale A0pSi e si trova a circa 166 A.L. dalla nostra stella. Questa ruota su se stessa con una velocità di circa 29.5 km/s. La massa della stella è circa il triplo di quella del Sole ed il raggio cinque volte tanto. La temperatura stimata è intorno ai 10’400 K.

L’immagine in figura rappresenta lo spettro di θAur ripresa il giorno 03 Dicembre 2012 alle ore 21.45 (TMEC) da Briosco (MB) con un telescopio Newton SkyWatcher 200mm f/4 + reticolo di diffrazione StarAnalyser 100 + camera Magzero MZ-5m. Una prima analisi dello spettro di assorbimento mostra in modo marcato la presenza della serie di Balmer ed in particolare le linee dalla Hα alla Hζ. Di seguito è riportato l’istogramma dellla regione di interesse. L’offset ottenuto tramite fit gaussiano è 41.6979 pixel. La massima luminosità è raggiunta per lunghezze d’onda pari a 4995.2 Å. Scarica il file di testo della misura.

Spettro di assorbimento non calibrato (Visual Spec)

A questo punto si è proceduto alla realizzazione dello spettro MAX-assorbimento al fine di semplificare le future operazioni di fit. Effettuando un fit gaussiano sui picchi otteniamo:

  • 3882.8 Å linea Hζ dell’HI (3888.6 Å)
  • 3971.0 Å linea Hε dell’HI (3969.7 Å)
  • 4098.4 Å linea Hδ dell’HI (4101.3 Å)
  • 4340.6 Å linea Hγ dell’HI (4340.0 Å)
  • 4620.5 Å linea da identificare
  • 4740.3 Å linea da identificare
  • 4860.7 Å linea Hβ dell’HI (4860.8 Å)
  • 5202.8 Å linea da identificare
  • 5576.4 Å linea da identificare
  • 5623.9 Å linea da identificare
  • 5790.9 Å linea da identificare
  • 5885.9 Å linea da identificare
  • 6257.5 Å linea da identificare
  • 6551.4 Å linea Hα dell’HI (6562.1 Å)
  • 7597.9 Å linea da identificare
  • 7751.6 Å linea da identificare
  • 8184.4 Å linea da identificare



A5-βTri

La stella β della costellazione del Triangolo è di tipo A5III e si trova a circa 127 A.L. dalla nostra stella. Questa ruota su se stessa con una velocità di circa 70 km/s. La stella è una variabile probabilmente di tipo spettroscopica ad eclisse. La temperatura stimata è intorno ai 7’220 K.

L’immagine in figura rappresenta lo spettro di βTri ripresa il giorno 03 Dicembre 2012 alle ore 22.01 (TMEC) da Briosco (MB) con un telescopio Newton SkyWatcher 200mm f/4 + reticolo di diffrazione StarAnalyser 100 + camera Magzero MZ-5m. Una prima analisi dello spettro di assorbimento mostra in modo marcato la presenza della serie di Balmer ed in particolare le linee dalla Hα alla Hη. Di seguito è riportato l’istogramma dellla regione di interesse. L’offset ottenuto tramite fit gaussiano è 25.971 pixel. La massima luminosità è raggiunta per lunghezze d’onda pari a 5095.0 Å. Scarica il file di testo della misura.

Spettro di assorbimento non calibrato (Visual Spec)

A questo punto si è proceduto alla realizzazione dello spettro MAX-assorbimento al fine di semplificare le future operazioni di fit. Effettuando un fit gaussiano sui picchi otteniamo:

  • 3827.3 Å linea Hη dell’HI (3835.0 Å)
  • 3886.2 Å linea Hζ dell’HI (3888.6 Å)
  • 3966.9 Å linea Hε dell’HI (3969.7 Å)
  • 4096.9 Å linea Hδ dell’HI (4101.3 Å)
  • 4336.4 Å linea Hγ dell’HI (4340.0 Å)
  • 4626.0 Å linea da identificare
  • 4860.0 Å linea Hβ dell’HI (4860.8 Å)
  • 5191.8 Å linea da identificare
  • 5588.5 Å linea da identificare
  • 5795.1 Å linea da identificare
  • 6544.8 Å linea Hα dell’HI (6562.1 Å)
  • 7593.2 Å linea da identificare
  • 7746.4 Å linea da identificare
  • 8181.8 Å linea da identificare
  • 8812.7 Å linea da identificare



A1-βAur (Menkalinan)

La stella β della costellazione dell’Auriga è un sistema stellare triplo di cui la stella più luminosa di classe A1IV e si trova a circa 81 A.L. dalla nostra stella. La sua massa è praticamente il triplo di quello del Sole mentre la massa circa il doppio. La temperatura effettiva è pari a circa 9’000 K e ruota su se stessa con una velocità di 33 km/s. Del sistema triplo, la seconda stella Menkalian B ha praticamente le stesse caratteristiche della componente principale. Il sistema Menkalian A e B costituiscono una variabile spettroscopica ad eclisse.

L’immagine in figura rappresenta lo spettro di βAur ripresa il giorno 03 Dicembre 2012 alle ore 21.37 (TMEC) da Briosco (MB) con un telescopio Newton SkyWatcher 200mm f/4 + reticolo di diffrazione StarAnalyser 100 + camera Magzero MZ-5m. Una prima analisi dello spettro di assorbimento mostra in modo marcato la presenza della serie di Balmer ed in particolare le linee dalla Hα alla Hζ. Di seguito è riportato l’istogramma dellla regione di interesse. L’offset ottenuto tramite fit gaussiano è 16.3886 pixel. La massima luminosità è raggiunta per lunghezze d’onda pari a 5285.6 Å. Scarica il file di testo della misura.

Spettro di assorbimento non calibrato (Visual Spec)

A questo punto si è proceduto alla realizzazione dello spettro MAX-assorbimento al fine di semplificare le future operazioni di fit. Effettuando un fit gaussiano sui picchi otteniamo:

  • 3878.5 Å linea Hζ dell’HI (3888.6 Å)
  • 3962.7 Å linea Hε dell’HI (3969.7 Å)
  • 4092.9 Å linea Hδ dell’HI (4101.3 Å)
  • 4332.3 Å linea Hγ dell’HI (4340.0 Å)
  • 4617.7 Å linea da identificare
  • 4854.1 Å linea Hβ dell’HI (4860.8 Å)
  • 5188.8 Å linea da identificare
  • 5480.0 Å linea da identificare
  • 5577.6 Å linea da identificare
  • 5786.7 Å linea da identificare
  • 5892.5 Å linea da identificare
  • 6252.7 Å linea da identificare
  • 6545.8 Å linea Hα dell’HI (6562.1 Å)
  • 7591.8 Å linea da identificare
  • 7744.8 Å linea da identificare
  • 8186.1 Å linea da identificare
  • 8819.4 Å linea da identificare
  • 8966.5 Å linea da identificare

La stessa stella è stata ripresa con il medesimo setup anche il giorno 19/12/2012 ore 23.03 (TMEC). L’offset ottenuto tramite fit gaussiano è 31.4795 pixel. La massima luminosità è raggiunta per lunghezze d’onda pari a 5274.4 Å. Scarica il file di testo della misura.

Spettro di assorbimento non calibrato (Visual Spec)

A questo punto si è proceduto alla realizzazione dello spettro MAX-assorbimento al fine di semplificare le future operazioni di fit. Effettuando un fit gaussiano sui picchi otteniamo:

  • 3810.9 Å linea Hη dell’HI (3835.0 Å)
  • 3878.1 Å linea Hζ dell’HI (3888.6 Å)
  • 3958.4 Å linea Hε dell’HI (3969.7 Å)
  • 4090.3 Å linea Hδ dell’HI (4101.3 Å)
  • 4328.9 Å linea Hγ dell’HI (4340.0 Å)
  • 4849.3 Å linea Hβ dell’HI (4860.8 Å)
  • 5784.8 Å
  • 6240.1 Å
  • 6546.5 Å linea Hα dell’HI (6562.1 Å)
  • 6866.6 Å
  • 7583.2 Å
  • 8188.2 Å



A7-αCep (Alderamin)

La stella α della costellazione del Cefeo è di tipo A7IV-V e si trova a circa 49 A.L. dalla nostra stella. La sua massa è praticamente il doppio di quello del Sole mentre il suo raggio è 2.5 volte. La temperatura effettiva è pari a 7’500 – 8’000 K e ruota su se stessa con una velocità di 246 km/s.

L’immagine in figura rappresenta lo spettro di αCep ripresa il giorno 03 Dicembre 2012 alle ore 21.55 (TMEC) da Briosco (MB) con un telescopio Newton SkyWatcher 200mm f/4 + reticolo di diffrazione StarAnalyser 100 + camera Magzero MZ-5m. Una prima analisi dello spettro di assorbimento mostra in modo marcato la presenza della serie di Balmer ed in particolare le linee dalla Hα alla Hε. Di seguito è riportato l’istogramma dellla regione di interesse. L’offset ottenuto tramite fit gaussiano è 22.0295 pixel. La massima luminosità è raggiunta per lunghezze d’onda pari a 5289.3 Å. Scarica il file di testo della misura.

Spettro di assorbimento non calibrato (Visual Spec)

A questo punto si è proceduto alla realizzazione dello spettro MAX-assorbimento al fine di semplificare le future operazioni di fit. Effettuando un fit gaussiano sui picchi otteniamo:

  • 3959.1 Å linea Hε dell’HI (3969.7 Å)
  • 4093.7 Å linea Hδ dell’HI (4101.3 Å)
  • 4333.4 Å linea Hγ dell’HI (4340.0 Å)
  • 4860.2 Å linea Hβ dell’HI (4860.8 Å)
  • 5187.3 Å linea da identificare
  • 5445.4 Å linea da identificare
  • 5489.7 Å linea da identificare
  • 5552.7 Å linea da identificare
  • 5592.1 Å linea da identificare
  • 5783.4 Å linea da identificare
  • 5891.9 Å linea da identificare
  • 6246.5 Å linea da identificare
  • 6551.3 Å linea Hα dell’HI (6562.1 Å)
  • 7282.8 Å linea da identificare
  • 7600.0 Å linea da identificare
  • 7744.0 Å linea da identificare
  • 8191.7 Å linea da identificare
  • 8650.7 Å linea da identificare
  • 8981.2 Å linea da identificare
  • 9318.4 Å linea da identificare



Misura della costante di Rydberg utilizzando un reticolo di diffrazione

ARTICOLI DI ASTRONOMIA AMATORIALE
VOLUME 1 NUMERO 1 (2012)

ABSTRACT

La temperatura dell’atmosfera stellare di stelle di classe spettrale A è tale per cui gli atomi di Idrogeno presenti si trovano principalmente in uno stato legato con numero quantico principale n maggiore o uguale a due. Le transizioni sullo stato fondamentale risultano quindi sfavorite e il canale aperto più probabile è la transizione dal livello n’ > 2 allo stato n = 2 (Serie di Balmer). Dato che la lunghezza d’onda della radiazione assorbita dal gas stellare è legata ai numeri quantici n ed n’ dalla nota formula di Rydberg, è possibile estrarre il valore dell’omonima costante R a partire dallo spettro elettromagnetico misurato al telescopio con un reticolo di diffrazione di tipo Star Analyser 100. In questo articolo si riportano i dati ottenuti utilizzando gli spettri di 14 stelle di tipo A acquisiti nell’anno 2012.

SCARICA L’ARTICOLO IN FORMATO PDF