1

Come raffreddare la propria reflex digitale

Come ben sappiamo mantenere bassa la temperatura di un sensore CMOS o CCD è di fondamentale importanza per la riduzione del rumore termico che viene registrato nei light frame acquisiti durante le sessioni astrofotografiche.

In commercio, la maggior parte delle camere CCD per uso professionale presentano sistemi più o meno complessi in grado di portare il sensore fino a decine di gradi sotto la temperatura ambiente. Per fare ciò vengono utilizzate semplici ventole per la rimozione del calore e la sua dispersione nell’ambiente o celle di Peltier che permettono di raggiungere e mantenere la temperatura di lavoro del sensore ben al di sotto dei zero gradi Celsius.

Ma come possiamo fare a raffreddare il sensore di una comune reflex che magari abbiamo già modificato per uso astronomico rimuovendo il filtro ir-cut?

La soluzione che procediamo ad analizzare e che è stata totalmente sviluppata in casa utilizzando parti di recupero, consiste nella realizzazione di una zanca in metallo da collegare alla reflex che funge da supporto per una ventola alimentata a 12V. Grazie all’elevato flusso d’aria prodotto (convezione forzata), la ventola applicata migliora la dissipazione del calore prodotto dalla camera riducendo conseguentemente la temperatura del sensore.

Il supporto è stato realizzato in Alluminio, scelta valutata in termini di minor peso rispetto ad altri materiali, piegando una piccola lastra, creando i fori per fissare la ventola  e tagliando le parti non necessarie in termini di stabilità al fine di alleggerirne ulteriormente la struttura. Bisogna assolutamente tenere in considerazione la solidità del proprio focheggiatore e allo stesso tempo non si deve utilizzare una lastra troppo sottile in quanto ciò potrebbe causare micro vibrazionicon conseguente micro mosso che va ad inficiare sulla qualità degli scatti. Può essere utile applicare un feltrino alla base di contatto con la reflex per smorzare le possibili micro vibrazioni che possono essere generate dalla ventola.

Per quanto riguarda la ventola utilizzata, la scelta è ricaduta in particolare su 2 modelli intercambiabili, entrambe brush-less in modo da ridurre il più possibile le vibrazioni smorzabili dal supporto. Una è da 3000 rpm che garantisce un maggior afflusso di aria a patto di presentare vibrazioni non trascurabili, ed una da 1800 rpm con minor flusso d’aria ma totalmente priva di vibrazioni. Queste ventole poi son state protette con una piccola gabbia per evitare che vengano inavvertitamente colpite le pale in rotazione e cablate con normale cavo 2×0,75 nero e rosso terminato su connettore a banana, la classica presa accendi sigari.

ngg_shortcode_0_placeholder

Ovviamente questa realizzazione deve avere anche un riscontro in termini di prestazioni, pertanto si è proceduto ad effettuare una serie di test in una stanza climatizzata a temperatura costante di 21±1° sia per quanto riguarda la temperatura rilevata nel corpo macchina (ottenuta con termometro interno) che per quanto riguarda il rumore presente nei dark frame ripresi a diversi tempi di posa. La fotocamera utilizzata è una Canon EOS 1000D.

TEMPERATURA DELLA FOTOCAMERA

Come si evince dal grafico la diminuzione di temperatura rilevata effettuando pose da 5 minuti di posa si attesta intorno ad un delta termico di pochi gradi nella prima mezzora, mentre dai 35 minuti in poi la variazione di temperatura rispetto alla condizione di ventola spenta si attesta attorno ai 5°C costanti. I valori riportati nel grafico sono la media di 3 test separati effettuati in entrambe le condizioni.

RUMORE TERMICO

Il rumore termico è stato valutato prendendo in considerazione la deviazione standard negli scatti di dark frame. Questa è stata misurata su dark frame ripresi a 5 minuti di distanza l’uno dall’altro in 3 sessioni distinte a cui è stata successivamente applicata la media per ogni frame. Come si nota dal grafico la quantità di rumore acquisito è molto minore con la ventola attiva, come si può evincere inoltre anche dalla seguente immagine comparativa.

Possiamo a questo punto concludere che questa semplice soluzione, di facile realizzazione, produce un abbattimento sensibile del rumore termico, migliorando non di poco la qualità dei frame acquisiti.

[contributo di Matteo Manzoni]




Il guadagno di una camera digitale

Negli ultimi anni, le maggiori ditte produttrici di fotocamere digitali (DSLR) stanno combattendo forsennatamente per aggiudicarsi il sensore con maggiore numero di pixel ed elettronica in grado di fornire il maggiore numero di ISO. Proprio per questo motivo abbiamo deciso di affrontare per l’ennesima volta l’argomento ISO, ovvero “il guadagno di una camera digitale”. Altri articoli presenti su questo sito sono il significato degli ISO nelle fotocamere digitalie gli ISO e l’immagine astronomica. ASTROtrezzi ha approfondito in dettaglio il processo che porta, partendo dai “fotoni” (luce) proveniente da oggetti celesti lontani nello spazio e nel tempo, ad avere una bellissima immagine astronomica sul monitor di casa nostra. Il guadagno di una camera digitale (e quindi vedremo gli ISO) si trova tra la generazione del segnale da parte del sensore CCD o CMOS (vedi l’articolo La generazione del segnale) ed il conseguente processo di digitalizzazione dello stesso (vedi l’articolo ADC: dal mondo analogico a quello digitale). Riassumiamo quindi brevemente cosa succede: il nostro raggio di luce (fotone) prodotto in una lontana galassia, viaggia per milioni di anni fino a raggiungere la nostra ottica (obiettivo e telescopio) che lo devia facendolo incidere su un pixel del nostro sensore. Qui, con una certa probabilità dettata dall’efficienza quantica (vedi l’articolo Efficienza quantica) viene convertito in elettroni. Dato un certo tempo di esposizione, la quantità di carica raccolta dal pixel viene amplificata e quindi digitalizzata da un componente elettronico noto come ADC (Analog to Digital Converter). Questo processo di amplificazione permette di ottimizzare la dinamica del sistema ovvero far si che la fotocamera possa raccogliere il maggior numero di sfumature di grigio (ricordiamoci che il sensore è in bianco e nero, vedi per esempio l’articolo costruire un’immagine a colori).

Supponiamo come esempio di lasciare esposto il nostro sensore per un certo tempo (tempo di esposizione) alla pioggia di fotoni cosmici. Una volta passato questo intervallo di tempo andiamo, come dei contadini, a raccogliere il numero di elettroni accumulati in ciascun pixel. Supponiamo che questi variano da 0 (cielo nero) a N (nucleo della galassia), rimanendo sempre al di sotto della massima Full Well Capacity ossia il massimo numero di elettroni immagazzinabili in un singolo pixel. A questo punto il nostro segnale dovrà essere digitalizzato a 14bit (ovvero convertito in 16384 differenti toni di grigio, misurati in ADU dove 0 ADU è il nero e 16383 ADU è il bianco). Prima della digitalizzazione però il segnale viene moltiplicato/diviso per un certo coefficiente detto guadagno della camera (G) e misurato in elettroni (e-) per ADU (alcuni definiscono guadagno il rapporto inverso ovvero ADU per e-). Quindi il numero di ADU in uscita dalla nostra camera andrà da 0 (per 0 elettroni prodotti nel sensore) a N/G. Ovviamente G < 1 significa che il segnale viene amplificato mentre G > 1 ridotto. Esiste una correlazione tra guadagno e ISO che però dipende dalla fotocamera digitale considerata (il guadagno è scelto in modo di ottimizzare la dinamica del sensore). Nel caso della Canon EOS 40D, il guadagno varia da 3.40 e-/ADU a 100 ISO a 0.21 e-/ADU a 1600 ISO.

Supponiamo quindi di aver raccolto con la nostra esposizione un numero di elettroni pari a 20000, allora questi corrisponderebbero a 5882 ADU a 100 ISO e 95238 ADU a 1600 ISO. Come si vede nel primo caso stiamo utilizzando il 36% della dinamica, mentre nel secondo caso, tutti i pixel che hanno collezionato più di 3440 elettroni appariranno come bianchi (16383 ADU) in quanto mandano in saturazione l’ADC. Ecco quindi che nel secondo caso l’immagine risulterà bruciata ovvero perdiamo informazioni sulle sfumature dei bianchi.

Abbiamo qui imparato una cosa molto importante: il guadagno non aumenta la sensibilità del sensore. Quest’ultimo infatti agisce solo al termine della raccolta della luce e pertanto non influenza la capacità o meno del sensore di immagazzinare i fotoni. Quindi il numero di fotoni raccolti da una CCD astronomica o DSRL è indipendente dal numero di ISO utilizzati ma è legato unicamente al tempo di esposizione e alle caratteristiche dell’ottica (rapporto focale). Chiamare (come si fa abitualmente) gli ISO sensibilità è quanto di più fuorviante si possa pensare. Ma allora come agiscono gli ISO sulle nostre immagini astronomiche?

Prima di tutto dobbiamo chiederci quale è il tempo di esposizione che abbiamo a nostra disposizione. Ricordiamo ancora una volta come quest’ultimo sia il parametro fondamentale della nostra ripresa astronomica. Supponiamo di avere un tempo t massimo dettato da vari fattori (tempo a disposizione, rischio meteo o inquinamento luminoso, qualità di inseguimento della montatura, numero di scatti che vogliamo mediare …). Andiamo quindi a misurare quanti elettroni riusciamo a collezionare in questo tempo utilizzando la nostra ottica (obiettivo fotografico o telescopio ad un certo rapporto focale fissato). Per fare ciò impostiamo gli ISO al minimo. Se già con gli ISO al minimo la nostra foto risulta già in saturazione (perdiamo informazione sui bianchi) allora sarà necessario abbassare il tempo di esposizione, altrimenti dovremo modificare gli ISO in modo che la nostra dinamica venga completamente coperta dai 16 bit dell’ADC. In figura 1 vediamo l’effetto di un’immagine che non sfrutta la dinamica, che la sfrutta appieno o va in saturazione.

Figura 1: (A) immagine che non sfrutta appieno la dinamica, (B) immagine corretta, (C) immagine in saturazione

 

Analizzando questa figura notiamo un problema tanto importante in astronomia quanto in fotografia tradizionale. Nella nostra immagine abbiamo sia parti deboli (nebulosità) caratterizzate da un numero esiguo di elettroni accumulati nel pixel che regioni luminose come le stelle, al limite della saturazione già a bassi valori di ISO. Come fare ad ottenere quindi immagini corrette dove le stelle luminose non vanno in saturazione e le deboli nebulosità possano emergere?

La risposta è ovviamente semplice dal punto di vista teorico quanto complessa da quello sperimentale: aumentare il numero di ADU ossia il numero di bit dell’ADC. Questa è la soluzione che in astronomia è stata affrontata con le camere CCD dedicate che lavorano infatti con ADC a 16 bit e non a 14 bit come le DSLR tradizionali. Il futuro delle reflex sarà quello di avere dinamiche sempre superiori in modo che ad un certo valore di ISO sarà possibile ottenere sfumature di neri e bianchi che poi verranno sfruttare in post-produzione al fine di ottenere immagini corrette.

In assenza di alti bit, l’unica possibilità è fare una doppia esposizione ovvero una a bassi ISO per le stelle ed una ad alti ISO per la debole nebulosità.Questa ultima frase potrebbe trarre alle sbagliate conclusione che aumentando gli ISO vediamo gli oggetti più deboli e quindi aumentiamo la sensibilità della camera. Come detto in precedenza questo non è vero. Alzare gli ISO vuol dire semplicemente “spalmare” il segnale sulla dinamica fornita dall’ADC. In questo processo non solo andremo ad aumentare il segnale (presente ed indipendente dagli ISO) ma anche il rumore.

Quindi riassumendo le migliori condizioni di lavoro sarebbero tempi lunghi e bassi ISO o in mancanza di tempo ISO adatti ad ottimizzare la dinamica del soggetto della ripresa (nebulose, galassie o ammassi). Il tutto diventerebbe ottimale se agli scatti deepsky si aggiungesse uno scatto “veloce” ottimizzato sulle stelle di campo in modo da salvarne i colori.

Questo ovviamente in un mondo idilliaco. Infatti se alti ISO significa alto rumore elettronico, lunghi tempi di esposizione significa alto rumore termico. Il secondo può essere eliminato grazie all’utilizzo del master dark frame, mentre il primo sommando più scatti. Ecco quindi l’amletico dilemma: meglio tanti scatti ad alti ISO o pochi scatti a bassi ISO? Se si considera un intervallo di tempo determinato (la notte astronomica), allora tenuto conto del tempo necessario per effettuare i dark frame, è meglio effettuare molti scatti a elevati valori di ISO, come dimostrato nell’articolo gli ISO e l’immagine astronomica. Questo ovviamente a patto che il rumore introdotto nell’amplificazione del segnale (ISO) sia casuale. Questo è vero generalmente per reflex semi-professionali o professionali. Per le reflex non professionali consigliamo un range di ISO compresi tra 400 e 800 ISO. Infine, nel caso di fotocamere raffreddate (CentralDS o CCD astronomiche), immagini a lunga posa risultano prive di rumore termico e pertanto si consigliano tempi di esposizione lunghi e valori di ISO bassi. Riportiamo a titolo di esempio in figura 2 il risultato del test riportato nell’articolo gli ISO e l’immagine astronomica.

Figura 2: Confronto tra la somma rispettivamente di 4 immagini da 8 minuti a 200 ISO e 30 immagini da 1 minuto a 1600 ISO.

Facciamo inoltre notare come, in assenza di scatti multipli (e quindi riduzione del rumore elettronico presente negli scatti ad alti ISO), l’utilizzo di tempi di esposizione lunghi e bassi valori di ISO è consigliata. Questa è la condizioni standard della fotografia tradizionale.

Concludendo quindi: il segnale astronomico (numero di fotoni che incidono sul pixel) non dipende dal numero di ISO utilizzati ma è funzione del tempo di esposizione. Maggiore sarà il tempo di esposizione e maggiore saranno le informazioni che andremo a raccogliere. A questo punto aspetta all’astrofotografo cercare di non perdere queste preziose informazioni scegliendo il valore di ISO più adatti. Questi dipenderanno dalla luminosità dell’oggetto, dal tempo a disposizione per effettuare la/le posa/e, dalla possibilità di effettuare multipli scatti, dal rumore dell’ADC (casuale o no?), da rumore termico dalla dinamica dell’ADC (14 o 16 bit). Figura 2 mostra come, seppur l’immagine a sinistra sia stata ottenuta esponendo per 8 minuti, questa sia stata distrutta dall’eccessivo rumore termico. Infatti raccogliendo meno informazioni (1 minuti) ma ottimizzando il valore degli ISO (elevati a patto di avere multipli scatti) si è riusciti a spremere al massimo l’informazione ottenendo un risultato analogo in termini di informazioni e superiore in termini di rumore.




Il Flat Frame

Negli articoli “Il bias frame” ed “Il dark frame” abbiamo visto come correggere il valore di luminosità assunto da ciascun pixel del nostro sensore a semiconduttore al fine di ottenere una risposta omogenea all’assenza di luce. In questo modo, in assenza di luce, il nostro elemento fotosensibile assumerà livello di luminosità pari a 0 ADU. Ma cosa succede ora se cominciamo a mandare dei fotoni sul sensore (si veda “Un Universo di fotoni”)? Quello che ci aspettiamo, una volta corretta la nostra immagine con il master dark ed il master bias, è che:

Livello di Luminosità = valore teorico + rumore elettronico casuale

Questo sarebbe vero se tutti i pixel rispondessero allo stesso modo alla radiazione luminosa. Purtroppo la situazione è più complicata e ogni pixel produce un numero di elettroni diverso dall’altro quando inondato da una sorgente luminosa uniforme. Perché?

I motivi possono essere molti. Prima di tutto ciascun elemento fotosensibile, a causa principalmente delle piccole dimensioni e quindi della difficoltà tecnologica nella realizzazione dello stesso, è diverso l’uno dall’altro. Così se inondiamo due pixel del nostro sensore a semiconduttore con una sorgente uniforme, questi forniranno due livelli di luminosità leggermente (si spera) diversi.

Inoltre non tutte le regioni del sensore sono sensibili allo stesso modo per motivi di costruzione ed infine la luce che ci giunge da una sorgente uniforme deve passare da un sistema ottico che per definizione non ha un campo perfettamente piano, ovvero ai bordi del campo si ha un maggiore assorbimento della radiazione luminosa (vignettatura). Se mettiamo tutti in formule, ciascun pixel avrà quindi livello di luminosità dato da:

Livello di Luminosità = (valore teorico x flat) + rumore elettronico casuale

dove con flat abbiamo indicato un coefficiente di proporzionalità diverso da pixel a pixel. Come ottenere questo coefficiente? La risposta è quantomai semplice. Basta inondare il sensore con una sorgente di luce uniforme. Questa dovrebbe generare un livello di luminosità uguale in ogni elemento fotosensibile. Ovviamente per quanto detto prima questo non succederà ed il valore di luminosità di ciascun pixel sarà pari a quello teorico per il flat. Ecco fatto quindi! Riprendere un’immagine di una sorgente luminosa coincide con il determinare per ciascun pixel il valore del coefficiente flat. Tale scatto è definito flat frame.

Sorgenti luminose uniformi ne esistono varie in commercio. Alcuni strumenti note come flat field generator o flat box sono in grado di fornire sorgenti di luce uniformi e con uno spettro praticamente bianco. Questo permette di avere in una sola esposizione un buon flat in tutti i canali RGB (vedi Costruire un’immagine a colori), fatto importante per sensori a colori come i CMOS delle DSLR. Altre sorgenti di luce approssimativamente uniformi sono i monitor dei computer, il cielo diurno, una maglietta bianca sull’ottica illuminata con una torcia, un muro o un foglio bianco. Lasciamo a voi la fantasia di trovare delle buone sorgenti di luce uniforme. In questi casi bisogna prestare attenzione a non riprendere le frequenze delle lampade (appaiono come bande chiare e scure nello scatto) o campi non perfettamente uniformi.

Trovata la sorgente di luce uniforme è necessario scattare con gli stessi ISO (bin) della ripresa dell’oggetto astronomico e soprattutto con la stessa messa a fuoco. Infatti un pixel potrebbe non assumere il valore di luminosità di un altro a seguito della presenza di polvere o macchie sul sensore. Tali macchie cambiano forma e intensità di assorbimento della luce al variare della messa a fuoco. Questo spiega il perché la messa a fuoco del flat frame deve essere la stessa dello scatto di ripresa dell’oggetto astronomico.

Cosa dire invece del tempo di esposizione? Questo va determinato in modo che il picco di luminosità del flat frame, che rappresenta il valore teorico in ADU fornito dalla sorgente di luce uniforme, risulti al centro dell’istogramma. Per fare questo è possibile utilizzare l’utility INFO presente sulle DSLR al fine di visualizzare sullo schermo della fotocamera l’istogramma relativo allo scatto oppure utilizzando software di elaborazioni delle immagini. Se usate IRIS per elaborare immagini CCD ricordatevi di sottoesporre il flat data la compressione in bit necessaria per elaborare l’immagine. Anche il flat frame ovviamente non è privo di errori ed il suo livello di luminosità è dato da:

Livello di Luminosità = valore teorico + rumore elettronico non casuale + offset + rumore termico + rumore elettronico casuale

 I bias frame utilizzati per la correzione del dark e della ripresa dell’oggetto astronomico possono essere utilizzati anche per correggere il flat ovviando così al rumore elettronico non casuale ed all’offset. Per ovviare al rumore termico è necessario riprendere i dark frame ma utilizzando come tempo di ripresa il tempo di esposizione del flat e non quello di ripresa dell’oggetto astronomico. Il rumore elettronico casuale invece può essere ridotto sommando (mediando) più flat frame. Una volta corretto il flat frame e mediati i flat frame corretti (master flat frame) abbiamo:

Livello di Luminosità [mediato su N scatti] = valore teorico = flat

ottenendo così il coefficiente flat per ciascun elemento fotosensibile del nostro sensore a semiconduttore. I master flat presentano la stessa struttura sia nel caso di CCD che CMOS. Riportiamo pertanto un esempio di flat frame ripreso con una Canon EOS 500D modificata Baader (vedi La “modifica Baader” per DSLR) ed il relativo istogramma RGB. Come si vede dalle immagini, la sorgente luminosa generata dal flat field generator utilizzato non è perfettamente bianca. Ricordiamo infine che seppur in minima parte, la temperatura e l’umidità possono modificare le condizioni di ripresa dei flat frame. Pertanto consigliamo di riprendere tali scatti direttamente sul campo al termine della sessione astrofotografica.

Figura 1: esempio di flat frame acquisito con una DSLR modello Canon EOS 400D modificata Baader.

Figura 2: istogramma per i canali RGB relativo al flat frame riportato in Figura 1.

 




Il Dark Frame

Nell’articolo “Il Bias Frame” abbiamo visto come un sensore a semiconduttore (CCD e CMOS) risponde al buio, ovvero alla totale assenza di fotoni. Abbiamo così imparato che in questo caso, il livello di luminosità di un pixel è dato dai seguenti contributi:

Livello di luminosità = valore teorico + offset + rumore termico + rumore elettronico casuale + rumore elettronico non casuale

Il Bias Frame è definito come “scatto veloce” con tempo di esposizione paragonabile a zero e pertanto con rumore termico nullo. Cosa succede se ora invece di effettuare uno “scatto veloce” al buio ne effettuiamo uno lento? In questo caso gli elettroni di origine termica, emessi in modo continuo dall’elemento a semiconduttore, andrebbero a sommarsi durante il tempo di esposizione producendo un rumore in un certo senso “proporzionale” al tempo di esposizione. Dal punto di vista teorico questo andrà a costituire una coda ad alti valori di livelli di luminosità. Per sensori di tipo CCD il gioco finisce qui, mentre la faccenda si complica nel caso di CMOS dove la temperatura del sensore non è generalmente controllata (se non nei casi delle DSLR CentralDS). Infatti, con l’aumentare del tempo di esposizione, e posa dopo posa, la temperatura del sensore CMOS varia così come l’emissione di elettroni termici in ciascun elemento fotosensibile. Il risultato complessivo è che ciascuna posa di buio risulta lievemente diversa. A questa variazione della temperatura dell’elemento a semiconduttore bisogna aggiungere anche la possibilità che la temperatura ambiente cambi durante la notte.

Indichiamo quindi con il termine rumore termico l’aumento del livello di luminosità associato all’emissione di elettroni termici, sia questa costante nel caso di sensori a temperatura controllata o variabile nel caso di DSLR tradizionali o raffreddate esternamente.

IL DARK FRAME

Il discorso fatto per in precedenza è riferito ad un solo elemento a semiconduttore: può essere esteso a tutta la matrice di fotoelementi che costituiscono il sensore? In linea generale si, ma dato che l’emissione termica (così come il bias) è diversa per ogni elemento a semiconduttore, il valore di luminosità di buio sarà differente da pixel a pixel. Data un’immagine di buio è quindi necessario sapere quale è il valore dell’offset, l’eventuale rumore elettronico non casuale ed il rumore termico di ciascun pixel, in modo che se sottratto all’immagine “lenta di buio” si otterrà una matrice di pixel con livello di luminosità pari a 0 ADU. Solo in questo modo se durante la ripresa di un oggetto celeste non arriveranno fotoni sull’elemento fotosensibile corrisponderà ad una luminosità pari a 0 ADU.

Prendiamo pertanto la nostra macchina fotografica digitale (DSLR) o la nostra camera CCD astronomica e poniamo il tappo di fronte all’ottica al fine di non far arrivare fotoni sul sensore ricreando pertanto la condizione di buio. Settiamo il tempo di esposizione della nostra DSLR o camera CCD astronomica pari a quello che verrà utilizzato per la ripresa dell’oggetto celeste (vedi il post “Il Light Frame”). Ricordiamo che per le reflex dobbiamo impostare anche gli stessi ISO utilizzati per riprendere la nostra immagine astronomica al fine di porsi nelle stesse condizioni di scatto (la catena elettronica funziona in modo diverso a seconda degli ISO impostati). Per lo stesso motivo anche il binning della nostra camera CCD non dovrà essere modificato. Con questi settaggi si riprendano un certo numero di immagini noti come dark frame.

Per calibrare un’immagine astronomica in modo che un pixel assuma un livello di luminosità pari a 0 ADU è necessario sottrarre all’immagine stessa l’offset, i rumori elettronici non casuali e il rumore termico. Questo può essere effettuato facilmente dato che tutte queste informazioni sono contenute nel dark frame. In particolare definito master dark frame la media dei singoli dark frame, il livello di luminosità di ciascun pixel dell’immagine astronomica calibrata sarà:

Livello di Luminosità = valore assunto dal pixel – master dark frame

Ecco quindi che se effettuiamo una ripresa della galassia di Andromeda e abbiamo un pixel che non viene raggiunto da nessun fotone (ad esempio un pixel del fondo cielo), allora questo assumerà un livello di luminosità pari, per quanto detto prima:

Livello di luminosità = valore teorico + rumore elettronico casuale + master dark

Ecco quindi che se all’immagine della galassia di Andromeda sottraiamo il master dark frame, otteniamo che il pixel privo di fotoni avrà un livello di luminosità pari a:

Livello di luminosità = valore teorico + rumore elettronico casuale

Dove il rumore elettronico casuale diviene prossimo a zero mediando un certo numero N di immagini riprese nelle stesse condizioni di scatto ovvero

Livello di luminosità [mediato su N scatti] = valore teorico

Scattare un dark frame però richiede molto tempo ed ottenere una statistica molto elevata può risultare complicata. Infatti ricordiamo che i dark frame vanno ripresi nelle stesse condizioni di scatto dell’immagine astronomica. Durante la nostra sessione astrofotografica dobbiamo quindi, in caso di fotocamere digitale prive di controllo della temperatura del sensore, prevedere di lasciare del tempo per acquisire un certo numero minimo di dark frame. Purtroppo nel tempo impiegato per riprendere un dark frame otteniamo più di 100 bias frame. Quindi malgrado non contenga informazioni sul rumore termico, il (master) bias frame è in grado di stimare con precisione statistica superiore il valore dell’offset e di eventuali rumori elettronici non casuali presenti nella ripresa rispetto al (master) dark frame. Diviene pertanto conveniente separare i due contributi e quindi creare un master dark che contiene il solo rumore termico medio ed un master bias che contiene informazioni sull’offset e sul rumore elettronico non casuale. Quindi ricordando che nel dark, il valore di luminosità di ciascun pixel è pari a

Livello di luminosità = master bias + rumore termico + rumore elettronico casuale = dark

Allora possiamo identificare la sola componente di rumore termico medio come:

rumore termico + rumore elettronico casuale = dark – master bias

e quindi successivamente mediando su un numero N  di scatti è possibile ridurre a zero il rumore elettronico casuale ottenendo il rumore termico medio.

Riassumendo, per calibrare correttamente le nostre immagini astronomiche sfruttando al meglio le informazioni che possiamo ricavare dal master bias frame, descritto nel post “Il Bias Frame”, e dai dark frame dobbiamo calcolare il rumore termico medio che con abuso di notazione viene anche chiamato master dark frame (creando ovviamente confusione):

rumore termico medio = MEDIA (dark frame – master bias frame) = master dark frame

e questo contiene tutte le informazioni sull’emissione termica di elettroni da parte di ciascun fotoelemento del sensore a semiconduttore. Il master bias frame conterrà invece tutte le informazioni relative all’offset e ai rumori elettronici di natura non casuale. Ecco quindi che in un’immagine di buio, ciascun pixel assumerà il seguente livello di luminosità:

Livello di luminosità [mediato su N scatti] = master bias frame + master dark frame

PIXEL CALDI E PIXEL FREDDI

Sino ad ora abbiamo parlato del rumore intrinseco che ciascun elemento a semiconduttore possiede. Esiste però la possibilità che alcuni pixel funzionino in maniera del tutto anomala rispetto agli altri. In particolare la maggior parte di questi posseggono un comportamento quantizzato, ovvero o rimangono sempre ad un livello di saturazione o rimangono completamente spenti. Nel primo caso si parla di pixel caldi mentre nel secondo caso di pixel freddi. Pixel caldi e freddi vanno “sottratti” da ciascuna immagine astronomica dato che introducono un segnale “fittizio”. In questo caso più che sottrazione si dovrebbe parlare di sostituzione. Infatti il livello di luminosità dei pixel caldi e freddi viene sostituito con il valore 0 ADU che è quello che dovrebbe assumere, dopo la calibrazione, un pixel che non riceve radiazione luminosa. Dato che i pixel freddi hanno livello di luminosità pari a 0 ADU, è praticamente inutile una loro identificazione, visto che la sostituzione non avrebbe nessun effetto. Ecco pertanto che la maggior parte dei software astronomici specializzati nell’elaborazione delle immagini prevedono una funzione di ricerca e quindi sostituzione, dei soli pixel caldi.

Esistono ora dei pixel che funzionano in modo anomalo ma non sono pixel caldi e freddi? Purtroppo si. Generalmente non sono molti e vengono identificati (e quindi eliminati) dai software astronomici come pixel caldi. Questi pixel noti come “pixel riscaldati” (warm pixel) sono pixel che generano un rumore termico con un tasso superiore rispetto a quelli tradizionali portandoli, in tempi di esposizione sufficientemente lunghi o a seguito di un aumento della temperatura del sensore, a saturazione.

Uno studio dei pixel riscaldati è progetto di ricerca per ASTROtrezzi.it. Chi fosse interessato è pregato di inviare un e-mail all’indirizzo ricerca@astrotrezzi.it   

Riportiamo di seguito lo studio del dark frame per una ATIK 314L+ B/W (sensore CCD) e per una Canon EOS 40D (sensore CMOS).

ATIK 314L+ B/W

Cominciamo con il dire che la CCD ATIK 314L+ B/W è una camera astronomica raffreddata da cella di Peltier a temperatura controllata. Questo significa che durante gli scatti la temperatura del sensore viene mantenuta costante da un sistema di controllo elettronico. Questo fatto è dimostrato riprendendo un certo numero di dark frame e confrontati. Il confronto è illustrato in Figura 1 e mostra come la distribuzione dei livelli di luminosità non vari da una posa ad un’altra.

Figura 1: Confronto tra quattro dark frame ripresi in successione uno dopo l’altro. Come si vede le distribuzioni sono identiche indice di una temperatura costante del sensore durante la ripresa

Data l’ampia dinamica e la ridotta corrente di lettura, una CCD è maggiormente sensibile alla corrente di buio o meglio al rumore termico. In particolare dato che la quantità di ADU indotti dal rumore termico aumenta all’aumentare del tempi di esposizione, quello che succede è una traslazione netta dell’offset all’aumentare del tempo di esposizione. Ecco quindi che in maniera più marcata rispetto ai sensori CMOS abbiamo uno spostamento dell’offset a causa dell’aumento del rumore termico integrato. Questo è visibile in Figura 2 dove si vede la differenza tra il bias frame ed un dark frame da 1000 secondi (quindi un periodo di integrazione, tempo di esposizione, un milione di volte più lungo).

Figura 2: Confronto tra bias e dark frame. Lo spostamento dell’offset è dovuto sostanzialmente al tempo di integrazione del rumore termico.

La sensibilità dei CCD al rumore termico o se vogliamo l’aumento della dinamica di questi tipi di sensori rispetto ai CMOS si riflette in una “non ottimale” sottrazione del master bias frame dai dark. In particolare dato che l’offset del bias è diverso da quello del dark, La sottrazione produce una curva che non risulta centrata a zero ADU come dovrebbe ma ha un massimo leggermente spostato (vedi Figura 8). In ogni caso, un eventuale stretching dell’istogramma permetterebbe di sistemare il tutto ottenendo quanto atteso teoricamente. Un esempio di rumore termico (master dark frame) effettuata su una singola posa è visibile in Figura 3.

Figura 3: esempio di master dark frame acquisito con una CCD astronomica modello ATIK 314L+ B/W. Si noti la distribuzione uniforme del segnale termico.

CANON EOS 40D

In questo post ci concentreremo principalmente sui sensori CMOS, dato che escludendo i modelli CentralDS, in tutti gli altri casi risultano privi di sistemi di controllo della temperatura (tra cui la Canon EOS 40D in esame). Questo rende complessa la descrizione del dark frame nel caso di reflex digitali. In primo luogo un rivelatore a semiconduttore, se non raffreddato, varia la sua temperatura durante la fase di funzionamento. Dato che gli scatti, siano essi immagini astronomiche o dark frame, avvengono in successione, quello che succede è che la temperatura dell’elemento fotosensibile va via via aumentando così come il rumore termico da essa indotto. L’effetto globale è quello della formazioni di code ad alti (e bassi) valori di ADU come visibile in Figura 4. Malgrado questo, gran parte dei pixel si comportano correttamente mantenendo costante la quantità di rumore termico ed aumentandone soltanto le fluttuazioni statistiche. Questo è visibile in Figura 5.

Figura 4: variazione della distribuzione dei livelli di luminosità del dark frame in funzione del numero di scatti successivi ossia della temperatura del sensore

Figura 5: malgrado l’aumento della larghezza dell’offset, la maggior parte dei singoli pixel si comportano correttamente mantenendo costante il suo valore.

Se però ora calcoliamo la quantità di ADU complessivi dell’immagine e la dividiamo per il numero di pixel del sensore, otteniamo quello che potremmo chiamare livello di luminosità media per pixel. In altre parole quello che andiamo a misurare è la quantità di ADU che mediamente possiede ciascun pixel, ovvero un’approssimazione dell’offset. Se il rumore indotto dai singoli fotoelementi fosse costante, allora il livello di luminosità medio per pixel non dovrebbe variare da scatto a scatto. L’aumento di temperatura invece provoca un aumento del rumore termico che si traduce quindi in un aumento del livello di luminosità medio per pixel. L’andamento per una successione di 8 dark frame da 7 minuti a 800 ISO, ripresi in successione uno dopo l’altro, è illustrato in figura 6. Come si vede, dopo un gradiente iniziale dovuto al riscaldamento “veloce” del sensore, successivamente l’aumento del livello di luminosità media in funzione della temperatura è lineare (con coefficiente di correlazione pari a 0.97) pari a 2.6821 ADU/°C.

Figura 6: aumento del livello di luminosità media per pixel in funzione della temperatura del sensore per dark frame da 7 minuti a 800 ISO acquisiti in rapida successione.

La figura 6 dovrebbe farci riflettere sul fatto che quando riprendiamo delle immagini astronomiche con una reflex digitale, il rumore termico ad essa associato non è costante e varia da posa a posa. Cosa possiamo fare? Purtroppo poco. L’unica possibilità è lasciare un periodo di tempo tra una posa e la seguente in modo da permettere al sensore di raffreddarsi. Ricordiamo comunque che il livello di luminosità media per pixel è variata in 8 dark da 7 minuti di “soli” 43 ADU su un valore medio inziale pari a 1044 ADU. L’errore che quindi commettiamo nel non considerare il riscaldamento del sensore a seguito del suo funzionamento è esiguo e mediamente inferiore al 5%. Gran parte del “rumore termico” è poi contenuto in quelli che abbiamo chiamati pixel caldi e riscaldati. Una sottrazione e correzione di questi pixel porterebbe ad un significativo miglioramento della qualità del master dark frame.

Un altro effetto è la dipendenza del rumore termico dal tempo di esposizione. Infatti all’aumentare del tempo di posta aumenta la quantità di rumore termico integrato. Il processo è lineare per tempi di esposizione sufficientemente lunghi come mostrato in figura 7. In particolare in grande è riportata la variazione del livello di luminosità medio per pixel in funzione del tempo di esposizione, mentre nel riquadro piccolo il livello di luminosità medio per pixel sempre in funzione del tempo di esposizione.

A 800 ISO, abbiamo dopo 150 secondi di posa, un incremento di rumore termico lineare (coefficiente di correlazione lineare 0.99) pari a 0.1421 ADU/secondo.

Figura 7: variazione del livello di luminosità media per pixel in funzione del tempo di esposizione. Nel riquadro a lato livello di luminosità media per pixel in funzione del tempo di esposizione. Tutti i dark frame sono stati ripresi a 800 ISO.

La quantità di rumore termico che introduciamo aumenta quindi linearmente con il tempo di esposizione andando a deteriorare l’informazione contenuta nell’elemento fotosensibile. Ma quanto contribuisce questo rumore rispetto all’offset? Abbiamo visto in precedenza come un aumento della temperatura del sensore introduce una variazione del livello di luminosità media per pixel inferiore al 5%. In questo caso per tempi di esposizione pari a 7 minuti a 800 ISO abbiamo che la variazione di ADU rispetto al bias frame è pari a 42 ADU e quindi inferiore persino a quello che si ottiene a seguito del riscaldamento del sensore.

In ogni caso questo valore rimane costante da posa a posa se la temperatura del sensore rimanesse costante (cosa che invece abbiamo visto non accadere). 42 ADU è quindi il vero contributo di rumore medio contenuto in ciascun pixel alimentato per 7 minuti a 800 ISO in condizioni di buio ad una determinata temperatura T. Quindi se i 43 ADU dovuti alla variazione di temperatura del sensore erano una sorgente di errore nel processo di “costruzione” del master dark frame, questi 42 ADU costituiscono il rumore termico medio costante intrinseco della fotocamera e quindi facilmente correggibile attraverso il processo di sottrazione del master dark frame (rumore termico medio).

La variazione dell’offset del dark frame rispetto all’offset bias frame nel caso di CMOS varia quindi dal 5% nel caso di fotocamera “fredda” al 10% nel caso di fotocamera riscaldata. Tale discrepanza è comunque trascurabile e fa si che i due offset siano praticamente coincidenti traducendosi in un valore di livello di luminosità del master dark frame o del rumore termico medio pari a 0 ADU come correttamente atteso. Quindi nei sensori CMOS non siamo di fronte a quel offset fittizio descritto in precedenza nei sensori CCD e visibile in Figura 8.

Figura 8: distribuzione dei livelli di luminosità del master dark frame (rumore termico medio) nel caso di sensori CCD e CMOS. Si vede come nel caso dei sensori CMOS il segnale sia soltanto di natura termica (coda esponenziale) mentre nei sensori CCD si osserva la presenza di un finto offset a seguito della maggiore dinamica e quindi sensibilità allo spostamento dell’offset a seguito dell’integrazione del rumore termico.

Ricordiamo ancora una volta come la maggior parte del rumore termico venga immagazzinato nei pixel riscaldati che quindi giocano un ruolo importante nei sensori a semiconduttori. Riportiamo infine un’immagine del master dark frame nel caso di un sensore CMOS Canon EOS 40D.

Figura 9: esempio di master dark frame acquisito con una DSLR modello Canon EOS 40D (sensore CMOS). E’ possibile osservare i gradienti termici dovuti alle regioni del sensore più vicine a “punti caldi” dell’elettronica.

CONDIZIONI DI DARK FRAME

Ovviamente, dato che i dark frame contengono l’informazione termica del sensore a semiconduttore è strettamente necessario che questi vengano ripresi nelle medesime condizioni ambientali delle immagini astronomiche. Tale vincolo si traduce nel prevedere un tempo di ripresa dei dark a seguito di una notte astrofotografica oppure nel memorizzare la temperatura di utilizzo della camera CCD astronomica o DSLR nel caso di sensori dotati di sistemi di raffreddamento con controllo della temperatura. Nel caso delle reflex digitali persino l’umidità o la luce ambiente potrebbe influire la ripresa del dark frame e quindi è vivamente sconsigliato la ripresa di questi scatti durante l’alba o il tramonto o in notte successive a quella di ripresa.

Ricordiamo inoltre che alcuni pixel possono diventare caldi o freddi a seguito di una rottura per invecchiamento. Pertanto, nel caso di CCD o DSLR raffreddati è necessario ogni tanto aggiornare le proprie librerie di dark.

 MEDIA O MEDIANA

Sino ad ora abbiamo parlato di rumori, ovvero fenomeni fisici sempre presenti in ogni singolo dark frame. Esistono però altri fenomeni che possono verificarsi solo in alcuni dark frame e non in tutti. Questi fenomeni sporadici rischiano però di introdurre un segnale nella media spurio che al netto andrà a peggiorare la qualità dell’immagine astronomica finale. Un segnale sporadico è ad esempio quello generato dai raggi cosmici (per maggiori informazioni si legga l’articolo “I raggi cosmici e l’astrofotografia digitale”) i quali possono rilasciare parte della loro energia in uno o più pixel liberando un gran numero di elettroni.

Un modo per non considerare in una media i pixel che subiscono solo sporadicamente una grossa variazione del loro Livello di Luminosità è utilizzare invece della classica media aritmetica delle immagini, la mediana. Per maggiore informazioni sui vari algoritmi di media di immagini o più precisamente stacking delle immagini si legga l’articolo “Metodi di Stacking”.

IRIS E IL DARK FRAME

IRIS permette di creare il master dark (inteso come rumore termico medio), partendo dai singoli dark frame e dal master bias frame. Il metodo consigliato per combinare le singole immagini è il metodo della mediana. Per quanto riguarda la procedura operativa da seguire si rimanda alla Guida per l’elaborazione delle immagini astronomiche con IRIS. Chi fosse interessato allo studio metodico del dark frame o semplicemente vuole integrare questo articolo con ulteriori considerazioni e schede tecniche, è pregato di inviare una e-mail a ricerca@astrotrezzi.it .