1

Nebulosa Velo – 05/11/2023

Telescopio o obiettivo di acquisizione (Imaging telescope or lens): Canon EF 200 mm f/2.8 L II USM a/at f/2.8.

Camera di acquisizione (Imaging camera): CentralDS 600D II Pro [4.3 μm]

Montatura (Mount): SkyWatcher NEQ6

Telescopio o obiettivo di guida (Guiding telescope or lens): Rifrattore acromatico (refractor) Svbony 60mm f/4

Camera di guida (Guiding camera): ASI 120 MM Mini [3.75 μm]

Riduttore di focale (Focal reducer): non presente (not present)

Software (Software): PixInsight 1.8.8 + Adobe Photoshop 23.0.2

Accessori (Accessories): non presente (not present)

Filtri (Filter):  IDAS NBZ 2″

Risoluzione (Resolution): 5184 x 3456 (originale/original), 5202 x 3464 (finale/final)

Data (Date): 05/11/2023

Luogo (Location): Varenna – LC, Italia (Italy)

Pose (Frames): 15 x 720 sec at/a 800 ISO.

Calibrazione (Calibration): 20 dark, 50 flat dark, 51 bias, 50 flat

Fase lunare media (Average Moon phase): 45%

Campionamento (Pixel scale): 4.442158 arcsec/pixel

Focale equivalente (Equivalent focal lenght): 200 mm

Note (note):

Nebulosa Velo – 05/11/2023




Illuminare la notte

Astrofili e Astrofotografi passano la loro vita alla ricerca del buio. Eppure, anche il nictofilo più incallito sa che, per muoversi al buio, è necessario utilizzare una fonte di luce. Il problema non si porrebbe se l’occhio non impiegasse più di 30 minuti per adattarsi all’oscurità.

Questo fenomeno di adattamento inizia con la completa dilatazione della pupilla che passa da un diametro di 2 mm in condizione di luce a 8 mm in condizione di buio. Se il restringimento della pupilla è un processo veloce, quasi istantaneo; la dilatazione è un processo molto lento e può durare alcuni minuti. Bisogna inoltre considerare il fatto che, in assenza di luce, i coni smettono di funzionare ed i bastoncelli iniziano ad attivarsi dando origine a quella che è nota come visione notturna (monocromatica). Questa attivazione è un processo lento, della durata di una ventina di minuti, ed è alimentato dalla sintesi da parte del nostro corpo di una proteina detta rodopsina. Viceversa, bastano invece pochi secondi di luce per rompere tale molecola con conseguente riduzione della sensibilità dei bastoncelli.

Ora, come fare a mantenere una condizione di adattamento all’oscurità garantendo un livello minimo di illuminazione? I biologi si accorsero fin da subito che la neutralizzazione della rodopsina non è stimolata dalla luce rossa, anche se intensa. Quindi, illuminando l’ambiente con una luce rossa a bassa intensità sarà possibile conservare la condizione di adattamento al buio. Questo spiega perché negli osservatori astronomici si illuminano gli ambienti con delle lampade di colore rosso.

Con la nascita dell’astrofotografia l’utilizzo della luce rossa assunse ancora maggiore importanza in quanto questa era l’unica in grado di non impressionare le pellicole fotografiche. Conferma di questo fatto è l’utilizzo dell’illuminazione rossa nelle camere oscure.

Per tutti questi motivi l’utilizzo di torce e/o lampade rosse sono diventate con il passare del tempo le uniche fonti di luce permesse durante campi astronomici, astrofotografici e negli osservatori astronomici. Ma siamo sicuri che questa condizione è ancora valida ai giorni nostri?

Per quel che riguarda gli astrofili visualisti nulla è cambiato e la luce rossa rimane l’unica sorgente di illuminazione che può garantire loro una visione del cielo notturno ottimale. Gli astrofotografi invece hanno subito un balzo tecnologico che li ha portati dall’epoca della pellicola fotografica ai moderni sensori a semiconduttore.

Questi ultimi vengono utilizzati sia nella fotografia tradizionale che in quella astronomica. Se in passato con la stessa pellicola fotografica era possibile eseguire scatti sia fotografici che astrofotografici, oggi i sensori a semiconduttore vengono impiegati in modo differente a seconda del loro campo di applicazione.

Nella fotografia tradizionale realizzata con normali reflex digitali (note anche come DSLR), il sensore a semiconduttore risponde alla luce visibile in modo del tutto analogo a quello che facevano un tempo le pellicole fotografiche. Questo vuol dire che anche le reflex digitali moderne sono poco sensibili alla luce rossa.

In astrofotografia invece i sensori a semiconduttore devono essere molto sensibili alla luce rossa ed del vicino infrarosso. In questo modo è possibile massimizzare il segnale prodotto dalle nebulose ad emissione che brillano principalmente nella riga Hα a 656 nm (colore rosso). Questo può essere ottenuto anche modificando le tradizionali reflex digitali in modo da renderle più sensibili alla luce rossa (si legga l’articolo “La modifica Baader per DSLR”).

La risposta spettrale delle camere astronomiche ovvero la capacità di queste di raccogliere la luce a seconda della lunghezza d’onda della luce incidente, viene successivamente alterata dall’interposizione di filtri interferenziali come i filtri anti-inquinamento luminoso (LPS) o a banda stretta (Hα, Hβ, SII, OIII). L’effetto complessivo di camera e filtri determina la lunghezza d’onda, e quindi il colore, della luce con cui illuminare gli ambienti circostanti.

Purtroppo, tutte le sorgenti di luce artificiale oggi permesse e disponibili sul mercato sono a spettro continuo. In particolare, le più diffuse, se non uniche presenti sul mercato, sono le luci LED. Per produrre una luce di un determinato colore utilizzando la tecnologia LED, è possibile utilizzare almeno quattro diverse tecniche:

  1. Utilizzare un diodo LED con spettro di emissione che, seppur continuo, presenta un picco alla lunghezza d’onda che identifica il colore. In questo caso si parla di LED colorati.
  2. Utilizzare una terna di LED colorati: rosso, verde e blu. In questo caso, ciascun colore sarà generato dalla combinazione di questi tre LED. Lo spettro complessivo sarà ovviamente continuo ed in questo caso si parlerà di LED RGB.
  3. Utilizzare un LED in luce bianca, circondato da un bulbo in vetro o plastica colorata. In questo caso, lo spettro continuo del LED verrà ristretto ad una banda centrata nel colore richiesto. Seppur spesso anche in questo caso si parla di LED colorati in realtà la definizione corretta è lampade LED colorate in quanto il colore non è dato dal diodo LED ma dal colore del bulbo.
  4. Utilizzare un LED in luce bianca a cui è stato sovrapposto un filtro interferenziale capace di far passare solo una determinata lunghezza d’onda. In questo caso lo spettro complessivo di emissione della lampada sarà in buona approssimazione discreto e corrispondente alla lunghezza d’onda voluta. Lampade del genere non esistono sul mercato ma possono essere assemblate artiginalmente unendo un LED bianco ad un filtro interferenziale. In questo caso parleremo di lampade LED filtrate.

Da sinistra a destra: lampada LED colorata, LED RGB, lampada LED filtrata.

Di tutte le soluzioni, ovviamente la lampada LED filtrata è l’unica che realmente ci permette di controllare la lunghezza d’onda della luce ambientale, essendo questa a spettro discreto. In tutti gli altri casi, la nostra sorgente di luce sarà a spettro continuo ed andrà necessariamente a peggiorare la qualità delle nostre riprese astrofotografiche introducendo un gradiente cromatico. Purtroppo però, trovare filtri interferenziali capaci di fare passare una sola lunghezza d’onda indipendentemente dall’angolo di vista è davvero molto difficile e particolarmente costoso.

Lampada LED filtrata con filtro 10 nm Pixelteq a 620 nm a confronto con la risposta spettrale di un filtro anti-inquinamento luminoso IDAS NGS1.

Usare lampade LED colorate è sicuramente la soluzione peggiore in quanto la banda passante è generalmente troppo ampia. Ad esempio, una lampada con bulbo di colore rosso emette luce con lunghezze d’onda comprese tra 620 e 760 nm con lunghe code nel verde e nel vicino infrarosso. Con una banda di emissione così ampia, la possibilità di dare contributi al canale rosso delle nostre riprese astrofotografiche, persino quelle in banda stretta, non è per nulla trascurabile. Ricordiamo inoltre che in questo range troviamo anche la famosa linea Hα delle nebulose ad emissione, fondamentale per le riprese di oggetti del profondo cielo.

Lampada LED colorata a confronto con la risposta spettrale di un filtro anti-inquinamento luminoso IDAS NGS1. L’area colorata rappresenta il possibile disturbo generato dall’illuminazione ambientale.

Anche utilizzare LED RGB può essere dannoso. Infatti, per generare qualsiasi colore che non sia uno dei tre primari additivi è necessario accendere tre LED: rosso, verde e blu. Questo si traduce in un rumore presente in tutti e tre i canali della nostra ripresa astrofotografica, indipendentemente dal filtro utilizzato. Quindi la soluzione LED RGB è preferibile alla lampada LED colorata solo se si utilizza uno dei tre colori primari.

Lampada RGB impostata per generare luce a 620 nm a confronto con la risposta spettrale di un filtro anti-inquinamento luminoso IDAS NGS1. L’area colorata rappresenta il possibile disturbo generato dall’illuminazione ambientale.

Infine, l’utilizzo di LED colorati risulta essere nel suo complesso quella meno dannosa, ad esclusione della lampada LED filtrata decisamente meno economica. Data infatti la risposta spettrale del sistema camera astronomica + filtro interferenziale, è possibile determinare la lunghezza d’onda (o le lunghezze d’onda) a cui il nostro sistema è meno sensibile. Dato questo valore è necessario cercare sul mercato lampade LED con spettro di emissione centrato in quella lunghezza d’onda. Se si utilizza un filtro a banda stratta di tipo Hα, ad esempio, un LED di colore blu sarà sicuramente la scelta ottimale. Se invece utilizziamo un filtro antinquinamento luminoso, un LED di colore prossimo alla riga del sodio o del rosso con lunghezza d’onda maggiore di 700 nm possono essere soluzioni più che valide.

LED colorato (o RGB impostato su un colore primario) a confronto con la risposta spettrale di un filtro anti-inquinamento luminoso IDAS NGS1. L’area colorata, seppur piccola, rappresenta il possibile disturbo generato dall’illuminazione ambientale.

Per ciascuno dei casi illustrati, avere un LED dimmerabile può essere utile al fine di poter variare il livello di luminosità ambientale. Il modo migliore per determinare quanto il nostro sistema sia sensibile al tipo di luce con cui vogliamo illuminare l’ambiente circostante è quello di fotografare un oggetto presente nell’ambiente stesso. La sorgente di luce migliore sarà quella che darà il minore contributo in tutti e tre i canali ripresi. Di seguito sono riportate delle riprese effettuate con camera astronomica CentralDS 600D II Pro e filtro Astronomik Hα da 2 pollici e diversi tipi di illuminazione. Come si vede il LED RGB WiZ A.E27 utilizzato in modalità colore primario (rosso) è quello che ha dato i risultati migliori con un debole disturbo nel canale rosso e totale assenza nei canali verde e blu.

Confronto tra le varie fonti di illuminazione ambientale (canale rosso).

Confronto tra le varie fonti di illuminazione ambientale (canale verde).

Confronto tra le varie fonti di illuminazione ambientale (canale blu).

 




NGC 7000 – 22,23/06/2016

Telescopio o obiettivo di acquisizione (Imaging telescope or lens): Newton SkyWatcher BlackDiamond 250 mm f/5

Camera di acquisizione (Imaging camera): CCD Atik 383L+ B/W [5.4 μm] a/at -10°C

Montatura (Mount): SkyWatcher NEQ6

Telescopio o obiettivo di guida (Guiding telescope or lens): Rifrattore acromatico (refractor) SkyWatcher 102mm f/5

Camera di guida (Guiding camera): Magzero MZ-5m B/W [5.2 μm]

Riduttore di focale (Focal reducer): non presente (not present)

Software (Software): PixInsight 1.8 + Adobe Photoshop CC2015

Accessori (Accessories): correttore di coma Baader MPCC Mark III (coma corrector)

Filtri (Filter):  Astronomik CCD Hα 13nm, Astronomik CCD SII 13nm, Astronomik CCD OIII 12nm da 2”

Risoluzione (Resolution): 1681 x 1268 (originale/original), 2506 x 3320 (finale/final)

Data (Date): 22-23/06/2016

Luogo (Location): Briosco – MB, Italia (Italy)

Pose (Frames): 17 x 600 sec bin 2×2 Hα, 20 x 600 sec bin 2×2 SII,  17 x 600 sec bin 2×2 OIII

Calibrazione (Calibration): 51 dark, 50 bias, 35 flat Hα+SII+OIII.

Fase lunare media (Average Moon phase): 93.6 – 87.5 %

Campionamento (Pixel scale): 0.89256 arcsec/pixel

Focale equivalente (Equivalent focal lenght): 1250 mm

Note (note): immagine ripresa presso l’Osservatorio Astronomico Smeraldino. Composizione SII Hα OIII

NGC 7000 - 22,23/06/2016




NGC 7000 – 05/08/2014

Telescopio o obiettivo di acquisizione (Imaging telescope or lens): Rifrattore ED (ED reftactor) Tecnosky 70mm f/6

Camera di acquisizione (Imaging camera): CCD Atik 383L+ B/W [5.4 μm]

Montatura (Mount): SkyWatcher NEQ6

Telescopio o obiettivo di guida (Guiding telescope or lens): Rifrattore ED (ED reftactor) Tecnosky Carbon Fiber 80mm f/7

Camera di guida (Guiding camera): Magzero MZ-5m B/W [5.2 μm]

Riduttore di focale (Focal reducer): non presente (not present)

Software (Software): PixInsight + Adobe Photoshop CS3

Accessori (Accessories): riduttore/spianatore 0.8x (0.8x reducer/field flattener)

Filtri (Filter): Astronomik CCD Hα 13nm, Astronomik CCD SII 13nm, Astronomik CCD OIII 12nm

Risoluzione (Resolution): 1681 x 1268 (originale/original), 1388 x 1046 (finale/final)

Data (Date): 05/08/2014

Luogo (Location): Sormano (CO), Italia (Italy)

Pose (Frames): 5 x 780 sec bin 2×2 Hα, 5 x 1080 sec bin 2×2 SII, 5 x 1080 sec bin 2×2 OIII,

Calibrazione (Calibration): 10 x 780 sec bin 2×2 dark Hα, 10 x 1080 sec bin 2×2 dark SII, 10 x 1080 sec bin 2×2 dark OIII, 40 bias, 40 flat Hα, 40 flat SII , 40 flat OIII.

Fase lunare media (Average Moon phase): 69.2%

Note (note): RGB (SIIHαOIII)

NGC7000 - 05/08/2014




M27 (NGC 6853) – 17/07/2014

Telescopio o obiettivo di acquisizione (Imaging telescope or lens): Newton SkyWatcher BlackDiamond 200 mm f/5

Camera di acquisizione (Imaging camera): CCD Atik 383L+ B/W [5.4 μm]

Montatura (Mount): SkyWatcher NEQ6

Telescopio o obiettivo di guida (Guiding telescope or lens): Rifrattore acromatico (refractor) SkyWatcher 102mm f/5

Camera di guida (Guiding camera): Magzero MZ-5m B/W [5.2 μm]

Riduttore di focale (Focal reducer): non presente (not present)

Software (Software): PixInsight + Adobe Photoshop CS3

Accessori (Accessories): correttore di coma Baader MPCC (coma corrector)

Filtri (Filter): Astronomik CCD Hα 13nm, Astronomik CCD SII 13nm, Astronomik CCD OIII 12nm

Risoluzione (Resolution): 1681 x 1268 (originale/original), 1569 x 1186 (finale/final)

Data (Date): 17/07/2014

Luogo (Location): Briosco (MB), Italia (Italy)

Pose (Frames): 7 x 720 sec bin 2×2 Hα, 3 x 900 sec bin 2×2 SII, 5 x 900 sec bin 2×2 OIII,

Calibrazione (Calibration): 12 x 720 sec bin 2×2 dark Hα, 27 x 900 sec bin 2×2 dark SII, 27 x 900 sec bin 2×2 dark OIII, 141 bias, 30 flat Hα, 48 flat SII , 53 flat OIII.

Fase lunare media (Average Moon phase): 63.4%

Note (note): RGB (SIIHαOIII). Riportiamo inoltre il canale Hα ben riuscito grazie alla buona statistica.

M27 (NGC 6853) - 17/07/2014

M27 (NGC 6853) - 17/07/2014 , canale H-alfa.




I filtri astronomici

L’utilizzo dei filtri in astrofotografia è fondamentale, specialmente se si utilizzano CCD astronomiche e/o si riprende da zone soggette ad elevato inquinamento luminoso. Lo scopo dei filtri ottici è quello di selezionare regioni più o meno ristrette dello spettro elettromagnetico di un determinato tipo di polarizzazione oppure semplicemente diminuire l’intensità della sorgente luminosa. Nel primo caso si possono utilizzare materiali in grado di assorbire (filtri ad assorbimento) o riflettere (filtri a riflessione tra cui i filtri interferenziali o dicroici) determinate lunghezze d’onda. Nel secondo caso invece vengono sfruttate le proprietà di determinati materiali in grado di selezionare una determinata polarizzazione della luce (polarizzatori) ed infine nel terzo caso si utilizzano materiali in grado di riflettere parzialmente tutte le lunghezze d’onda del visibile (filtri neutri). I filtri ad assorbimento e riflessione sono caratterizzati da una quantità detta curva di trasmissione che rappresenta la capacità del filtro di far passare una determinata lunghezza d’onda della radiazione luminosa. Queste curve possono o non possono essere normalizzate ad uno (o 100%). I filtri neutri invece sono identificati dalla capacità o meno del filtro di far passare la luce visibile noto come coefficiente di trasmissione. Coefficiente di trasmissione e curva di trasmissione sono concetti differenti anche se ovviamente legati tra loro. Il primo dice quanta luce passa dal filtro, la seconda invece indica quale è la probabilità per tale luce di possedere una determinata lunghezza d’onda una volta passata attraverso filtro. Il valore assoluto del logaritmo in base dieci del coefficiente di trasmissione è detta densità ottica, grandezza fondamentale per la scelta dei filtri neutri. I polarizzatori invece hanno densità ottica variabile a seconda dell’angolo tra la polarizzazione della luce incidente e quella del polarizzatore, detta legge di Malus.

In questo post e nei seguenti analizzeremo in dettaglio quasi tutti i filtri utilizzati in astrofotografia, ed in particolare:

Purtroppo non verranno presi in esame i filtri Hα per osservazioni solari a  cui sarà dedicata una sezione apposita.




NGC 2246 – 19/03/2014

Telescopio o obiettivo di acquisizione (Imaging telescope or lens): Canon EF 100-400mm f/5.6 L IS USM a/at 300 mm

Camera di acquisizione (Imaging camera): CCD Atik 383L+ B/W [5.4 μm]

Montatura (Mount): SkyWatcher NEQ6

Telescopio o obiettivo di guida (Guiding telescope or lens): Rifrattore (reftactor) SkyWatcher 70mm f/7

Camera di guida (Guiding camera): Magzero MZ-5m B/W [5.2 μm]

Riduttore di focale (Focal reducer): non presente (not present)

Software (Software): PixInsight + Adobe Photoshop CS3

Accessori (Accessories): non presenti (not present)

Filtri (Filter): Astronomik CCD Hα 13nm, Astronomik CCD SII 13nm, Astronomik CCD OIII 12nm

Risoluzione (Resolution): 1681 x 1268 (originale/original), 1681 x 1193 (finale/final)

Data (Date): 19/03/2014

Luogo (Location): Sormano – CO, Italia (Italy)

Pose (Frames): 3 x 900 sec bin 2×2 Hα, 4 x 1020 sec bin 2×2 SII, 3 x 1020 sec bin 2×2 OIII,

Calibrazione (Calibration): 5 x 900 sec bin 2×2 dark Hα, 5 x 1020 sec bin 2×2 dark SII, 5 x 1020 sec bin 2×2 dark OIII, 50 bias, no flat.

Fase lunare media (Average Moon phase): 89.0%

Note (note): RGB (SIIHαOIII)

NGC2246 - 19/03/2014




IC 1848 – 06/12/2013

Telescopio o obiettivo di acquisizione (Imaging telescope or lens): Rifrattore ED (ED reftactor) Tecnosky Carbon Fiber 80mm f/7

Camera di acquisizione (Imaging camera): CCD Atik 383L+ B/W [5.4 μm]

Montatura (Mount): SkyWatcher NEQ6

Telescopio o obiettivo di guida (Guiding telescope or lens): Newton SkyWatcher BlackDiamond 150 mm f/5

Camera di guida (Guiding camera): Magzero MZ-5m B/W [5.2 μm]

Riduttore di focale (Focal reducer): riduttore/spianatore 0.8x (0.8x reducer/field flattener)

Software (Software): PixInsight + Adobe Photoshop CS3

Accessori (Accessories): non presenti (not present)

Filtri (Filter): Astronomik CCD Hα 13nm, Astronomik CCD SII 13nm, Astronomik CCD OIII 12nm

Risoluzione (Resolution): 1681 x 1268 (originale/original), 1623 x 1245 (finale/final)

Data (Date): 06/12/2013

Luogo (Location): Briosco – MB, Italia (Italy)

Pose (Frames): 8 x 780 sec bin 2×2 Hα, 6 x 1080 sec bin 2×2 SII, 6 x 960 sec bin 2×2 OIII,

Calibrazione (Calibration): 10 x 780 sec bin 2×2 dark Hα, 10 x 1080 sec bin 2×2 dark SII, 10 x 960 sec bin 2×2 dark OIII, 51 bias, 29 flat Hα, 30 flat SII, 30 flat OIII

Fase lunare media (Average Moon phase): 20.9%

Note (note): RGB (SIIHαOIII)

IC1848 - 06/12/2013

IC 1848 - 06/12/2013 (seconda versione)




IC 1396 – 02-03-05-08-10/09/2013

Telescopio o obiettivo di acquisizione (Imaging telescope or lens): Newton SkyWatcher BlackDiamond 150 mm f/5

Camera di acquisizione (Imaging camera): CCD Atik 383L+ B/W [5.4 μm]

Montatura (Mount): SkyWatcher NEQ6

Telescopio o obiettivo di guida (Guiding telescope or lens): Rifrattore ED (ED reftactor) Tecnosky Carbon Fiber 80mm f/7

Camera di guida (Guiding camera): Magzero MZ-5m B/W [5.2 μm]

Riduttore di focale (Focal reducer): correttore di coma (coma corrector)

Software (Software): IRIS + Adobe Photoshop CS3

Accessori (Accessories): non presenti (not present)

Filtri (Filter): Astronomik CCD Hα 13nm, Astronomik CCD SII 13nm, Astronomik CCD OIII 12nm

Risoluzione (Resolution): 1681 x 1268 (originale/original), 1238 x 1633 (finale/final)

Data (Date): 02-03-05-08-10/09/2013

Luogo (Location): Briosco – MB, Italia (Italy)

Pose (Frames): 8 x 360 sec bin 2×2 Hα, 4 x 840 sec bin 2×2 SII, 4 x 660 sec bin 2×2 OIII,

Calibrazione (Calibration): 15 x 360 sec bin 2×2 dark Hα, 13 x 840 sec bin 2×2 dark SII, 24 x 660 sec bin 2×2 dark OIII, 58 bias, 50 flat Hα, 50 flat SII, 50 flat OIII

Fase lunare media (Average Moon phase): 7.0%

Note (note): RGB (SIIHαOIII)

IC 1396 - HST Palette




NGC 6888 – 30/06.25/07/2013

Telescopio o obiettivo di acquisizione (Imaging telescope or lens): Rifrattore ED (ED reftactor) Tecnosky Carbon Fiber 80mm f/7

Camera di acquisizione (Imaging camera): CCD Atik 383L+ B/W [5.4 μm]

Montatura (Mount): SkyWatcher NEQ6

Telescopio o obiettivo di guida (Guiding telescope or lens): Newton SkyWatcher BlackDiamond 150 mm f/5

Camera di guida (Guiding camera): Magzero MZ-5m B/W [5.2 μm]

Riduttore di focale (Focal reducer): riduttore/spianatore 0.8x (0.8x reducer/field flattener)

Software (Software): IRIS + Adobe Photoshop CS3

Accessori (Accessories): non presenti (not present)

Filtri (Filter):  Astronomik CCD Hα 13nm, Astronomik CCD OIII 12nm

Risoluzione (Resolution): 3362 x 2537 (originale/original), 3295 x 2473 (finale/final)

Data (Date): 30/06/2013 – 25/07/2013

Luogo (Location): Briosco – MB, Italia (Italy)

Pose (Frames): 5 x 1200 sec bin 1×1 Hα (30/06/2013), 4 x 1200 sec bin 1×1 OIII (25/07/2013)

Calibrazione (Calibration): 5 x 1200 sec dark (01/07/2013), bias sintetico (synthetic bias), 50 flat x  Hα (30/06/2013), 30 flat x OIII (25/07/2013)

Fase lunare media (Average Moon phase): 42.7% (30/06/2013) – 86.2% (25/07/2013)

Campionamento (Pixel scale): 2.496 arcsec/pixel

Focale equivalente (Equivalent focal lenght): 446 mm

Note (note): Il canale verde è stato ricostriuito sinteticamente (green channel is synthetic)

NGC 6888 - 30/06.25/07/2013




NGC 7635 – 06/12/2012

Telescopio o obiettivo di acquisizione (Imaging telescope or lens): Newton SkyWatcher BlackDiamond 150 mm f/5

Camera di acquisizione (Imaging camera): CCD Atik 314L+ B/W [6.45 μm]

Montatura (Mount): SkyWatcher NEQ6

Telescopio o obiettivo di guida (Guiding telescope or lens): Rifrattore ED (ED reftactor) Tecnosky Carbon Fiber 80mm f/7

Camera di guida (Guiding camera): Magzero MZ-5m B/W [5.2 μm]

Riduttore di focale (Focal reducer): non presente (not present)

Software (Software): IRIS + Adobe Photoshop CS3/CS6

Accessori (Accessories): correttore di coma Baader MPCC (coma corrector)

Filtri (Filter):  Astronomik CCD Hα 13nm, Astronomik CCD SII 13nm, Astronomik CCD OIII 12nm

Risoluzione (Resolution): 1391 x 1039

Data (Date): 06/12/2012

Luogo (Location): Briosco – MB, Italia (Italy)

Pose (Frames): 5 x 900 sec bin 1×1 Hα, 1 x 1024 sec bin 1×1 SII, 1 x 1024 sec bin 1×1 OIII

Calibrazione (Calibration): 5 x 900 sec dark, 1 x 1024 sec dark, 50 bias, 50 flat x  Hα, 50 flat x SII, 50 flat x OIII

Fase lunare media (Average Moon phase): 42%

Campionamento (Pixel scale): 660 sec / 374.66 pixel = 1.7616 arcsec/pixel

Focale equivalente (Equivalent focal lenght): 750 mm

Note (note): LRGB (HαSIIHαOIII)

NGC 7635 - 06/12/2012

NGC 7635 - 06/12/2012 (filtro/filter Hα)

NGC 7635 - 06/12/2012 (filtro/filter SII)

NGC 7635 - 06/12/2012 (filtro/filter OIII)




IC 1396 – 05/11/2012

Briosco (MB), 05/11/2012 – IC1396
Composizione LRGB [HαHαSIIOIII] effettuata con IRIS + Photoshop dove:

  • L: Filtro Astronomik Hα 13nm. Somma di 3 immagini da 1200 secondi bin 1 x 1 effettuata con IRIS.
  • R: Filtro Astronomik Hα 13nm. Somma di 3 immagini da 1200 secondi bin 1 x 1 effettuata con IRIS.
  • G: Filtro Astronomik SII 13nm. Somma di 3 immagini da 1200 secondi bin 2 x 2 effettuata con IRIS.
  • B: Filtro Astronomik OIII 12nm. Somma di 3 immagini da 1200 secondi bin 2 x 2 effettuata con IRIS.

Telescopio di guida: Rifrattore ED 80 mm f/7 Tecnosky Carbon Fiber + Camera Magzero MZ-5m.
Obiettivo di ripresa: Newton 150 mm f/5 SkyWatcher Black Diamond + Correttore di Coma Baader + filtro Astronomik +  CCD Atik 314L+ B/W.

L’immagine è stata pensata come un primo test del nuovo Newton 150 mm f/5 Black Diamond. Purtroppo l’umidità si è depositata sulle ottiche durante la notte rovinando completamente la posa.

IC 1396 - 05/11/2012




NGC 7380 – 19/09/2012

Briosco (MB), 16/09/2012 – NGC7380
Composizione LRGB [HαSIIHαOIII] effettuata con IRIS + Photoshop (in HST Palette) dove:

  • L: Filtro Astronomik Hα 13nm. Somma di 4 immagini da 800 secondi bin 1 x 1 + 100 bias + 26 dark + 100 flat effettuata con IRIS.
  • R: Filtro Astronomik SII 13nm. Somma di 4 immagini da 900 secondi bin 1 x 1 + 100 bias + 23 dark + 100 flat effettuata con IRIS.
  • G: Filtro Astronomik Hα 13nm. Somma di 4 immagini da 800 secondi bin 1 x 1 + 100 bias + 26 dark + 100 flat effettuata con IRIS.
  • B: Filtro Astronomik OIII 12nm. Somma di 4 immagini da 800 secondi bin 1 x 1 + 100 bias + 26 dark + 100 flat effettuata con IRIS.

Telescopio di guida: Newton 200 mm f/4 SkyWatcher + Camera Magzero MZ-5m.
Obiettivo di ripresa: Rifrattore ED 80 mm f/7 Tecnosky Carbon Fiber + Spianatore/Riduttore 0.8x + filtro Astronomik +  CCD Atik 314L+ B/W.

NGC 7380 - 19/09/2012

Riportiamo di seguito anche i tre canali separatamente (SII, Hα ed OIII). L’immagine ripresa in SII mostra un leggero mosso dovuto al cattivo inseguimento della montatura NEQ6 per tempi di posa superiori ai 14 minuti. L’immagine ripresa in OIII mostra invece una leggera sfocatura dovuta all’aberrazione cromatica del rifrattore ED (o al fatto che i filtri Astronomik non sono perfettamente afocali… verificheremo in futuro).

NGC 7380 (SII) - 19/09/2012

NGC 7380 (Hα) - 19/09/2012

NGC 7380 (OIII) - 19/09/2012




NGC 7000 – 26/07/2012

Briosco (MB), 26/07/2012 – NGC7000

Telescopio di ripresa: Newton 200 mm f/4 SkyWatcher + correttore di coma Baader MPCC + camera Canon EOS 500D (modificata Baader), software Canon EOS utility.

Telescopio di guida: Rifrattore ED 80 mm f/7 Tecnosky Carbon Fiber + camera MagZero MZ-5m, software PhDguiding 1s.

L’immagine è una composizione di tre immagini monocromatiche riprese con: Filtro Astronomik Hα 13 nm (canale rosso), Filtro Astronomik SII 13 nm (canale rosso), Filtro Astronomik OIII 12 nm (canale blu). La composizione finale consiste in una tricromia tipo Hubble Palette SII-Hα-OIII. I dati per ciascun filtro sono riportati di seguito:

  • Hα: somma di 11 immagini da 2 minuti a 3200 ISO (totale 0:22 h) + 6 dark + 30 bias + 30 flat (effettuati con flatbox Geoptik). Elaborazione IRIS
  • OIII: somma di 11 immagini da 2 minuti a 3200 ISO (totale 0:22h) + 6 dark + 30 bias + 30 flat (effettuati con flatbox Geoptik). Elaborazione IRIS
  • SII: somma di 5 immagini da 4 minuti a 3200 ISO (totale 0:20h) + 3 dark + 30 bias + 30 flat (effettuati con flatbox Geoptik). Elaborazione IRIS

composizione finale effettuata con Adobe Photoshop CS2/CS3. (Clicca qui per l’immagine originale in formato JPG)

NGC7000 - 26/07/2012