1

Il guadagno di una camera digitale

Negli ultimi anni, le maggiori ditte produttrici di fotocamere digitali (DSLR) stanno combattendo forsennatamente per aggiudicarsi il sensore con maggiore numero di pixel ed elettronica in grado di fornire il maggiore numero di ISO. Proprio per questo motivo abbiamo deciso di affrontare per l’ennesima volta l’argomento ISO, ovvero “il guadagno di una camera digitale”. Altri articoli presenti su questo sito sono il significato degli ISO nelle fotocamere digitalie gli ISO e l’immagine astronomica. ASTROtrezzi ha approfondito in dettaglio il processo che porta, partendo dai “fotoni” (luce) proveniente da oggetti celesti lontani nello spazio e nel tempo, ad avere una bellissima immagine astronomica sul monitor di casa nostra. Il guadagno di una camera digitale (e quindi vedremo gli ISO) si trova tra la generazione del segnale da parte del sensore CCD o CMOS (vedi l’articolo La generazione del segnale) ed il conseguente processo di digitalizzazione dello stesso (vedi l’articolo ADC: dal mondo analogico a quello digitale). Riassumiamo quindi brevemente cosa succede: il nostro raggio di luce (fotone) prodotto in una lontana galassia, viaggia per milioni di anni fino a raggiungere la nostra ottica (obiettivo e telescopio) che lo devia facendolo incidere su un pixel del nostro sensore. Qui, con una certa probabilità dettata dall’efficienza quantica (vedi l’articolo Efficienza quantica) viene convertito in elettroni. Dato un certo tempo di esposizione, la quantità di carica raccolta dal pixel viene amplificata e quindi digitalizzata da un componente elettronico noto come ADC (Analog to Digital Converter). Questo processo di amplificazione permette di ottimizzare la dinamica del sistema ovvero far si che la fotocamera possa raccogliere il maggior numero di sfumature di grigio (ricordiamoci che il sensore è in bianco e nero, vedi per esempio l’articolo costruire un’immagine a colori).

Supponiamo come esempio di lasciare esposto il nostro sensore per un certo tempo (tempo di esposizione) alla pioggia di fotoni cosmici. Una volta passato questo intervallo di tempo andiamo, come dei contadini, a raccogliere il numero di elettroni accumulati in ciascun pixel. Supponiamo che questi variano da 0 (cielo nero) a N (nucleo della galassia), rimanendo sempre al di sotto della massima Full Well Capacity ossia il massimo numero di elettroni immagazzinabili in un singolo pixel. A questo punto il nostro segnale dovrà essere digitalizzato a 14bit (ovvero convertito in 16384 differenti toni di grigio, misurati in ADU dove 0 ADU è il nero e 16383 ADU è il bianco). Prima della digitalizzazione però il segnale viene moltiplicato/diviso per un certo coefficiente detto guadagno della camera (G) e misurato in elettroni (e-) per ADU (alcuni definiscono guadagno il rapporto inverso ovvero ADU per e-). Quindi il numero di ADU in uscita dalla nostra camera andrà da 0 (per 0 elettroni prodotti nel sensore) a N/G. Ovviamente G < 1 significa che il segnale viene amplificato mentre G > 1 ridotto. Esiste una correlazione tra guadagno e ISO che però dipende dalla fotocamera digitale considerata (il guadagno è scelto in modo di ottimizzare la dinamica del sensore). Nel caso della Canon EOS 40D, il guadagno varia da 3.40 e-/ADU a 100 ISO a 0.21 e-/ADU a 1600 ISO.

Supponiamo quindi di aver raccolto con la nostra esposizione un numero di elettroni pari a 20000, allora questi corrisponderebbero a 5882 ADU a 100 ISO e 95238 ADU a 1600 ISO. Come si vede nel primo caso stiamo utilizzando il 36% della dinamica, mentre nel secondo caso, tutti i pixel che hanno collezionato più di 3440 elettroni appariranno come bianchi (16383 ADU) in quanto mandano in saturazione l’ADC. Ecco quindi che nel secondo caso l’immagine risulterà bruciata ovvero perdiamo informazioni sulle sfumature dei bianchi.

Abbiamo qui imparato una cosa molto importante: il guadagno non aumenta la sensibilità del sensore. Quest’ultimo infatti agisce solo al termine della raccolta della luce e pertanto non influenza la capacità o meno del sensore di immagazzinare i fotoni. Quindi il numero di fotoni raccolti da una CCD astronomica o DSRL è indipendente dal numero di ISO utilizzati ma è legato unicamente al tempo di esposizione e alle caratteristiche dell’ottica (rapporto focale). Chiamare (come si fa abitualmente) gli ISO sensibilità è quanto di più fuorviante si possa pensare. Ma allora come agiscono gli ISO sulle nostre immagini astronomiche?

Prima di tutto dobbiamo chiederci quale è il tempo di esposizione che abbiamo a nostra disposizione. Ricordiamo ancora una volta come quest’ultimo sia il parametro fondamentale della nostra ripresa astronomica. Supponiamo di avere un tempo t massimo dettato da vari fattori (tempo a disposizione, rischio meteo o inquinamento luminoso, qualità di inseguimento della montatura, numero di scatti che vogliamo mediare …). Andiamo quindi a misurare quanti elettroni riusciamo a collezionare in questo tempo utilizzando la nostra ottica (obiettivo fotografico o telescopio ad un certo rapporto focale fissato). Per fare ciò impostiamo gli ISO al minimo. Se già con gli ISO al minimo la nostra foto risulta già in saturazione (perdiamo informazione sui bianchi) allora sarà necessario abbassare il tempo di esposizione, altrimenti dovremo modificare gli ISO in modo che la nostra dinamica venga completamente coperta dai 16 bit dell’ADC. In figura 1 vediamo l’effetto di un’immagine che non sfrutta la dinamica, che la sfrutta appieno o va in saturazione.

Figura 1: (A) immagine che non sfrutta appieno la dinamica, (B) immagine corretta, (C) immagine in saturazione

 

Analizzando questa figura notiamo un problema tanto importante in astronomia quanto in fotografia tradizionale. Nella nostra immagine abbiamo sia parti deboli (nebulosità) caratterizzate da un numero esiguo di elettroni accumulati nel pixel che regioni luminose come le stelle, al limite della saturazione già a bassi valori di ISO. Come fare ad ottenere quindi immagini corrette dove le stelle luminose non vanno in saturazione e le deboli nebulosità possano emergere?

La risposta è ovviamente semplice dal punto di vista teorico quanto complessa da quello sperimentale: aumentare il numero di ADU ossia il numero di bit dell’ADC. Questa è la soluzione che in astronomia è stata affrontata con le camere CCD dedicate che lavorano infatti con ADC a 16 bit e non a 14 bit come le DSLR tradizionali. Il futuro delle reflex sarà quello di avere dinamiche sempre superiori in modo che ad un certo valore di ISO sarà possibile ottenere sfumature di neri e bianchi che poi verranno sfruttare in post-produzione al fine di ottenere immagini corrette.

In assenza di alti bit, l’unica possibilità è fare una doppia esposizione ovvero una a bassi ISO per le stelle ed una ad alti ISO per la debole nebulosità.Questa ultima frase potrebbe trarre alle sbagliate conclusione che aumentando gli ISO vediamo gli oggetti più deboli e quindi aumentiamo la sensibilità della camera. Come detto in precedenza questo non è vero. Alzare gli ISO vuol dire semplicemente “spalmare” il segnale sulla dinamica fornita dall’ADC. In questo processo non solo andremo ad aumentare il segnale (presente ed indipendente dagli ISO) ma anche il rumore.

Quindi riassumendo le migliori condizioni di lavoro sarebbero tempi lunghi e bassi ISO o in mancanza di tempo ISO adatti ad ottimizzare la dinamica del soggetto della ripresa (nebulose, galassie o ammassi). Il tutto diventerebbe ottimale se agli scatti deepsky si aggiungesse uno scatto “veloce” ottimizzato sulle stelle di campo in modo da salvarne i colori.

Questo ovviamente in un mondo idilliaco. Infatti se alti ISO significa alto rumore elettronico, lunghi tempi di esposizione significa alto rumore termico. Il secondo può essere eliminato grazie all’utilizzo del master dark frame, mentre il primo sommando più scatti. Ecco quindi l’amletico dilemma: meglio tanti scatti ad alti ISO o pochi scatti a bassi ISO? Se si considera un intervallo di tempo determinato (la notte astronomica), allora tenuto conto del tempo necessario per effettuare i dark frame, è meglio effettuare molti scatti a elevati valori di ISO, come dimostrato nell’articolo gli ISO e l’immagine astronomica. Questo ovviamente a patto che il rumore introdotto nell’amplificazione del segnale (ISO) sia casuale. Questo è vero generalmente per reflex semi-professionali o professionali. Per le reflex non professionali consigliamo un range di ISO compresi tra 400 e 800 ISO. Infine, nel caso di fotocamere raffreddate (CentralDS o CCD astronomiche), immagini a lunga posa risultano prive di rumore termico e pertanto si consigliano tempi di esposizione lunghi e valori di ISO bassi. Riportiamo a titolo di esempio in figura 2 il risultato del test riportato nell’articolo gli ISO e l’immagine astronomica.

Figura 2: Confronto tra la somma rispettivamente di 4 immagini da 8 minuti a 200 ISO e 30 immagini da 1 minuto a 1600 ISO.

Facciamo inoltre notare come, in assenza di scatti multipli (e quindi riduzione del rumore elettronico presente negli scatti ad alti ISO), l’utilizzo di tempi di esposizione lunghi e bassi valori di ISO è consigliata. Questa è la condizioni standard della fotografia tradizionale.

Concludendo quindi: il segnale astronomico (numero di fotoni che incidono sul pixel) non dipende dal numero di ISO utilizzati ma è funzione del tempo di esposizione. Maggiore sarà il tempo di esposizione e maggiore saranno le informazioni che andremo a raccogliere. A questo punto aspetta all’astrofotografo cercare di non perdere queste preziose informazioni scegliendo il valore di ISO più adatti. Questi dipenderanno dalla luminosità dell’oggetto, dal tempo a disposizione per effettuare la/le posa/e, dalla possibilità di effettuare multipli scatti, dal rumore dell’ADC (casuale o no?), da rumore termico dalla dinamica dell’ADC (14 o 16 bit). Figura 2 mostra come, seppur l’immagine a sinistra sia stata ottenuta esponendo per 8 minuti, questa sia stata distrutta dall’eccessivo rumore termico. Infatti raccogliendo meno informazioni (1 minuti) ma ottimizzando il valore degli ISO (elevati a patto di avere multipli scatti) si è riusciti a spremere al massimo l’informazione ottenendo un risultato analogo in termini di informazioni e superiore in termini di rumore.




Newbie (versione 1) – 14/02/2014

INTRODUZIONE

Newbie è un’applicazione JAVA sviluppata nell’ambito del progetto “Constellation” e del corso di astrofotografia digitale on-line di ASTROtrezzi.it . Scopo del programma è studiare come cambia la terna tempo di esposizione, diaframma e sensibilità. Quante volte infatti ci siamo posti il problema di voler conoscere il nuovo valore del tempo di esposizione al variare dell’apertura del diaframma o della sensibilità o di entrambi? Dal punto di vista matematico, data la terna di valori iniziali tempo di esposizione t1, diaframma f1 e sensibilità ISO1, questi sono legati alla terna finale (t2,f2,ISO2) dalla relazione:

(t1:t2) x (f2:f1) x (f2:f1) x (ISO1/ISO2) = 1

da cui fissati due dei tre parametri finali è possibile determinarne il terzo. Tempi, diaframmi ed ISO possono essere espressi in una qualsiasi unità di misura. Unico vincolo è che il tempo di esposizione deve essere espresso in forma decimale e non sessagesimale. Quindi 2 minuti e 30 secondi devono essere espressi come 2.5 minuti. Il programma ha finalità didattiche ma può essere utilizzato come comodo tool per sessioni astrofotografiche.

INSTALLAZIONE

Il programma Newbie v.1 è compatibile con MacOSX, Linux e Windows. Newbie richiede solo l’installazione di JAVA 7 (http://www.java.com/it/download/manual.jsp). Per verificare se JAVA è già presente sul vostro computer andate alla pagina di test http://www.java.com/it/download/testjava.jsp . Scaricate quindi il file Newbie_v1.jar dal link che trovate di seguito, copiatelo in una cartella qualsiasi del vostro computer (consigliamo la cartella Documenti) e quindi cliccateci sopra due volte per lanciarlo.

GUIDA ALL’UTILIZZO

Newbie v. 1 è stato sviluppato unicamente in lingua italiana. Cliccate due volte sul file Newbie_v1.jar per lanciarlo. Si aprirà la schermata di Newbie come mostrato qui sotto:

Schermata di Newbie (su Windows8).

A questo punto inserite partendo dall’alto i valori iniziali di Tempo di esposizione in secondi, Diaframma utilizzato espresso in f/ e Sensibilità utilizzata in ISO. Dopodiché decidete cosa volete calcolare cliccando su una delle tre opzioni messe a disposizione dal programma. Di default è selezionato il Tempo di esposizione. La voce selezionata dovrà essere lasciata invariata e quindi nel relativo campo dovrà apparire il valore zero. Riempite gli altri due campi con i valori finali (che possono, in uno dei due casi coincidere anche con quelli iniziali). Cliccate quindi su Calcola per eseguire il calcolo della voce selezionata. Per ritornare alle condizioni iniziali premete il tasto Reset altrimenti Esci per chiudere il programma. Se erroneamente si calcolano i parametri finali (t2,f2,ISO2) per valori di t1, f1 e/o ISO1 nulli, potrebbe apparire la scritta NaN. Premete Reset e inserite i valori corretti. Newbie v.1 è pensato per tempi di esposizione superiori al secondo. Per valori inferiori al secondo consigliamo la consultazione della Tabella sottostante.

In blu i tempi di esposizione indicati nei menù delle fotocamere digitali più comuni, in rosso il valore degli stessi espressi in secondi. Alcuni modelli di fotocamere potrebbero non avere tutti i valori riportati in tabella.

DISTRIBUZIONE E SVILUPPO

Newbie è un programma open source completamente gratuito. Malgrado questo è vietata la distribuzione se non autorizzata dall’autore. Tale autorizzazione può essere richiesta inviando un e-mail all’indirizzo davide@astrotrezzi.it . E’ possibile scaricare il sorgente direttamente da questo sito (vedi sezione DOWNLOAD). Per partecipare allo sviluppo di Newbie e degli altri applicativi di Constellation inviate un mail a ricerca@astrotrezzi.it .

DOWNLOAD

Di seguito riportiamo il link per scaricare il programma Newbie v.1 ed il sorgente per sviluppatori:

  • Newbie versione 1 : programma (JAR) , sorgente per sviluppatori (ZIP)




Il Master Bias Frame

Nel post Il bias frame, abbiamo analizzato la natura di questo particolare tipo di scatto utile per la calibrazione delle nostre immagini astronomiche. In particolare abbiamo visto come esso contenga informazioni sull’offset associato alla nostra camera di ripresa oltre che sulla struttura del rumore elettronico non casuale. Ovviamente il tutto condito da rumore elettronico casuale a media nulla.

Proprio quest’ultimo abbiamo imparato a ridurlo mediando numerosi bias frame. Infatti, essendo per definizione il rumore casuale a media nulla, è facilmente eliminabile mediando il valore del livello di luminosità di ciascun pixel su un certo numero di frame. La questione aperta, oggetto di questo post è: “Quanti scatti mediare?”. La risposta è sempre la solita che si trova su libri e siti di astrofotografia ovvero più scatti vengono mediati e migliore è il risultato ottenuto. Inoltre si trova erroneamente riportato che il rumore del bias frame mediato o master bias frame è inversamente proporzionale alla radice del numero di frame utilizzati nella media. Questo non è vero in generale e scopriremo il perché dal punto di vista statistico.

Innanzitutto supponiamo di considera un singolo pixel soggetto da solo rumore elettronico casuale. Questo significa che se consideriamo i valori di luminosità BL(x,y,i) assunti dal singolo pixel di coordinate (x,y) in un certo numero di frame N, questi saranno distribuiti secondo una distribuzione gaussiana centrata in un certo valore medio BL(x,y). Lo stesso ovviamente si può dire per ogni pixel del sensore e quindi per ogni valore della coordinata (x,y). Se ora quindi effettuiamo la media aritmetica dei vari bias frame, otterremo per ogni pixel il valore medio di luminosità BL(x,y). Se ora costruiamo la distribuzione dei livelli di luminosità BL(x,y) allora otterremo ancora una distribuzione gaussiana con valore medio BL che, se tutto è stato effettuato correttamente, corrisponde all’offset della nostra camera di ripresa. La distribuzione dei BL(x,y) è gaussiana e rappresenta la distribuzione dei valori medi di luminosità assunta da un certo numero N di bias frame. Essendo la distribuzione della media, questa ha larghezza σ pari al readout noise diviso per la radice di N. Il rumore elettronico casuale quindi scala come la radice quadrata del numero di bias frame utilizzati.

Purtroppo però il nostro bias frame non contiene solo rumore elettronico casuale associato all’elettronica ed al processo di conversione analogico/digitale (ADC) ma anche del rumore elettronico non casuale come rumori a pattern fisso o transienti. Questi andranno così a modificare la nostra distribuzione BL(x,y) che non scalerà quindi più con la radice quadrata del numero di frame. Trascurando i rumori transienti, di secondaria importanza ed eliminabili utilizzando ad esempio la mediana dei frame invece della media, i rumori a pattern fisso (righe, bande, …) non sono a media nulla e pertanto non vengono eliminati nel processo di media dei singoli bias frame. Praticamente più che di rumore dovremmo parlare di segnale.

Rumori casuali e non casuali vanno così a sommarsi in quadratura dando luogo alla larghezza σ complessiva della distribuzione dei valori di BL(x,y). Quando effettuiamo la somma di più bias frame avremo che la componente “casuale” di σ andrà a scalare con la radice quadrata del numero di bias frame, mentre la componente “non casuale” rimarrà fissa ad un determinato valore σ0. Nel caso ipotetico di avere un numero infinito di bias frame allora  σ coinciderà esattamente con σ0.

Al fine di dimostrare quanto appena detto, abbiamo effettuato la mediana di un certo numero di bias frame N calcolando di volta in volta la larghezza della distribuzione dei livelli di luminosità del master bias frame (ovvero ricordiamo ancora una volta, del frame ottenuto come media/mediana di N bias frame). La camera utilizzata è una ATIK 383L+ monocromatica in bin 1×1 raffreddata a -16.9°C ed una Canon EOS 500D. Il risultato ottenuto è mostrato in Figura 1.

Figura 1: quadrato della larghezza (RMS) della distribuzione dei livelli di luminosità BL(x,y) del master bias frame in funzione dell'inverso del numero di frame utilizzati, per camera CCD ATIK383L+ monocromatica e CMOS Canon EOS 500D

Dal fit effettuato sui punti di Figura 1 possiamo subito notare come il quadrato di σ sia funzione di 1/N (ovvero σ scala come la radice del numero di conteggi) e presenti un asintoto che corrispondente quindi al quadrato di σ0. Se mediamo quindi un numero di frame sufficientemente elevato (diciamo > 10, anche se > 50 è decisamente consigliato) allora il contributo a σ dovuto al rumore casuale diviene praticamente trascurabile.

Ricordiamo inoltre che, nel caso delle DSLR, σ è funzione del numero di ISO utilizzato dato che le condizioni di funzionamento dell’elettronica cambiano al variare della sensibilità utilizzata. Figura 2 mostra ad esempio la variazione di σ  in funzione degli ISO per una fotocamera Canon EOS 40D. Si può facilmente notare come questa incrementi in modo praticamente lineare all’aumentare della sensibilità.

Figura 2: larghezza della distribuzione dei livelli di luminosità BL(x,y) del bias frame in funzione degli ISO di una DSLR Canon EOS 40D

Concludendo quindi possiamo affermare che per ottenere un buon master bias frame è necessario acquisire un numero di frame N sufficientemente elevato da ridurre la componente di rumore casuale presente nell’immagine. Sono i rumori elettronici non casuali a determinare la larghezza minima della nostra distribuzione e pertanto un N eccessivamente grande non comporta nessun miglioramento della qualità del master bias frame. Purtroppo molto spesso i rumori non casuali sono intrinsechi dell’elettronica e pertanto difficilmente riducibili. Ricordiamo infine che bassi valori di sensibilità (ISO) sono consigliabili dato che posseggono un valore di σ inferiore. Questo non coincide con il readout noise dato che per ottenere tale valore dobbiamo sottrarre al bias frame la componente non casuale del rumore (ottenibile mediando un numero elevato di bias frame escluso quello in esame). Per maggiori informazioni sul readout noise consigliamo la lettura del post Il bias frame.




Canon EOS 40D

Questo post, in continuo aggiornamento, riporta una serie di test effettuate su una DSLR modello Canon EOS 40D acquistata nel 2009.

Rumore in funzione del tempo di esposizione
Questo test si prefigge di studiare la variazione del rumore in funzione del tempo di esposizione (e quindi della temperatura) per sensibilità fissata, pari a 100 ISO. Con rumore intendiamo la larghezza della gaussiana relativa al valore di buio. Infatti se riprendiamo un’immagine di buio (dark), effettuata ad esempio ponendo il tappo di fronte all’obiettivo, dovremmo ottenere in linea teorica una riga a 0 ADU corrispondente alla situazione di zero fotoni raccolti in ciascun fotoelemento. Per questioni di natura fisica ed elettronica, si è deciso di associare al valore di buio un certo numero di ADU noto come offset. Inoltre vari rumori (casuali) associati al processo di fotorivelazione fanno si che lo spettro di buio non sia una riga ma una distribuzione gaussiana centrata nell’offset e con larghezza pari al rumore. Lo spettro di buio a 100 ISO a macchina “fredda” (25 °C) e a tempo di esposizione pari a 1/8000 secondo è riportato in figura 1.

Figura 1: Spettro di buio di una Canon EOS 40D (1/8000 secondo, 25°C @ 100 ISO)

Un fit gaussiano dello spettro di buio mostrato in figura 1 fornisce un valore del rumore pari a σ = 5.55 ADU, confrontabile con il valore del readout noise di 5.74 ADU misurato da Christian Buil (http://www.astrosurf.com/buil/eos40d/test.htm). Questo valore dipende evidentemente dalla sensibilità utilizzata e dal tempo di esposizione. In figura 2 è riportato il valore del rumore in funzione del tempo di eposizione. Come si vede si ha un aumento esponenziale in scala semilogaritmica che si traduce in un andamento lineare in funzione del tempo di esposizione. Un fit lineare fornisce un coefficiente angolare pari a 0.003774 ADU/s ed un valore di rumore zero pari a 5.46 ADU. Questo porta ad un aumento del rumore pari a 0.23 ADU/min pari al 4.1% del valore zero.

Figura 2: rumore in funzione del tempo di esposizione per sensibilità pari a 100 ISO (punti rossi). In blu è stato sovrapposto il fit lineare.

Durante la prova è stata monitorata anche la temperatura della camera (estraendola dai dati EXIF), il cui andamento in funzione del tempo è riportato in figura 3.

Figura 3: andamento della temperatura della camera in funzione del tempo.

Rumore in funzione degli ISO
Il rumore non è solo funzione del tempo di esposizione ma anche della sensibilità utilizzata. Si è pertanto effettuata una misura di rumore mantenendo costante la quantità di luce raccolta. Questo si traduce nella scelta dei seguenti tempi di esposizione: 480 sec. @ 100 ISO (33°C), 240 sec. @ 200 ISO (36°C), 120 sec. @ 400 ISO (36°C),  60 sec.  @ 800 ISO (38°C), 30 sec. @ 1600 ISO (38°C) e 15 sec. @ 3200 ISO (38°C). L’andamento del rumore in funzione degli ISO è mostrato in figura 4.

Figura 4: andamento del rumore in funzione della sensibilità (ISO).

Offset in funzione del tempo di esposizione
L’offset o bias è il valore in ADU associato al segnale di buio. Il fit dello spettro mostrato in figura 1 con una distribuzione gaussiana fornisce un valore del centroide, corrispondente all’offset, pari a 1024.72 ADU compatibile con il valore 1024 ADU misurato da Christian Buil (http://www.astrosurf.com/buil/eos40d/test.htm). Purtroppo l’offset ha una leggera dipendenza dal tempo di esposizione (e quindi dalla temperatura) riportata in figura 5. Da un fit lineare si evince un coefficiente angolare pari a – 0.0095 ADU/s ed un valore di offset zero pari a 1024.82 ADU. Questo porta ad una variazione dell’offset di 0.57 ADU/min pari al 0.056% del valore zero.

Figura 5: posizione dell'offset in funzione del tempo di esposizione per sensibilità pari a 100 ISO (punti rossi). In blu è stato sovrapposto il fit lineare.




Gli ISO e l’immagine astronomica

Il mondo dell’astrofotografia è molto diverso da quello della fotografia tradizionale. Una delle caratteristiche peculiari è che, nel primo caso, focale e diaframma dell’ottica sono fissati. Quindi l’unica libertà che rimane all’astrofotografo è quella di variare tempo di esposizione e gli ISO della propria fotocamera digitale.
Come abbiamo letto nel post “il significato degli ISO nelle fotocamere digitali” maggiori sono gli ISO e maggiore sarà la sensibilità del sensore nel raccogliere la luce. Questo a scapito di un aumento del rumore. Questo rumore è principalmente di tipo casuale e quindi può essere limitato combinando più scatti del medesimo soggetto come riportato nei post “somma di immagini astronomiche” e “guida all’astrofotografia digitale”. Alla luce di queste argomentazioni nasce una delle questioni più dibattute: meglio riprendere poche pose a bassi ISO oppure molte pose ad alti ISO?
Dal punto di vista teorico utilizzare bassi ISO significa utilizzare bassi valori di amplificazione. Questo oltre a ridurre il rumore elettronico associato al processo di amplificazione migliora le performance dell’amplificatore stesso. Purtroppo però minori ISO significa minore sensibilità e quindi per ottenere un’immagine analoga a quella ottenuta ad alti ISO è necessario aumentare il tempo di esposizione. Aumentare il tempo di esposizione significa purtroppo riscaldare il sensore aumentandone così il rumore.
A basse temperature o in condizione di oggetti molto luminosi l’utilizzo di bassi ISO è vivamente consigliato. Per la Luna si consiglia 100 ISO, mentre per gli oggetti deepsky un valore tra 200 e 400 ISO è l’ideale. Sotto i 200 ISO infatti l’aumento in termini di performance dell’amplificatore è trascurabile e il rumore associato non diminuisce sensibilmente.
Cosa succede quando però la temperatura è elevata e/o l’oggetto ripreso è molto debole? In questo caso dobbiamo comprendere quale componente del rumore (dovuto al riscaldamento od elettronico) è dominante.
Come detto in precedenza, gran parte del rumore, sia esso termico o elettronico, può essere ridotto sommando più immagini riprese nelle medesime condizioni di scatto. A parità di tempo disponibile per la ripresa, ad alti ISO è possibile riprendere un maggior numero di scatti dato il ridotto tempo di esposizione.
Esiste poi una seconda componente di rumore termico che produce un pattern di pixel “stranamente caldi” che può essere solo limitatamente ridotto con la tecnica del dark (si vedano i post “la calibrazione delle immagini astronomiche” e “guida all’astrofotografia digitale”). Questi pixel diventano sempre via via maggiori all’aumentare del tempo di esposizione. Quindi utilizzare poche pose con tempi di esposizione lunghi, necessario per pose a bassi ISO, comporta un aumento globale del rumore.
Una buona performance dell’amplificatore si ottiene stando a metà o meglio un quarto dei massimi ISO messi a disposizione della fotocamera digitale. Per la Canon EOS 40D ad esempio, questo valore è pari a 800 – 1600 ISO. Riassumendo quindi: Ad alte temperature o in condizione di oggetti deboli l’utilizzo di alti ISO è vivamente consigliato.
Infine l’utilizzo di ISO elevati e quindi brevi tempi di esposizione può essere importante nel caso di montature non particolarmente preciso o in condizioni di forti raffiche di vento.
Un confronto sperimentale è stato ottenuto con Canon EOS 40D, riprendendo un’immagine di IC1396 stampata su un libro di astronomia. Con un tempo di ripresa equivalente pari a 34 minuti sono state ottenute queste due immagini somma rispettivamente di 4 immagini da 8 minuti a 200 ISO e 30 immagini da 1 minuto a 1600 ISO. Le prime intervallate da pause da 30 secondi, le seconde da 10. Il test ha mostrato come l’immagine a 1600 ISO sia decisamente meno rumorosa.

Confronto tra la somma rispettivamente di 4 immagini da 8 minuti a 200 ISO e 30 immagini da 1 minuto a 1600 ISO.




Il significato degli ISO nelle fotocamere digitali

Molti concetti come il tempo di esposizione o il diaframma hanno resistito al passaggio dal mondo analogico a quello digitale. Uno però ha dovuto radicalmente cambiare il proprio significato: la velocità della pellicola. Infatti nell’universo analogico le pellicole fotografiche si differenziavano a seconda della loro sensibilità alla radiazione luminosa. Pellicole sensibili venivano dette “veloci” altrimenti si parlava di pellicole “lente”. Questa definizione dipendeva dal fatto che a parità di luce raccolta le pellicole sensibili avevano bisogno di un minore tempo di esposizione e quindi erano per l’appunto più “veloci”. Lo standard ISO 5800:1987 definì due scale per misurare la velocità delle pellicole. Una lineare detta ASA o ISO mentre una seconda logaritmica detta scala DIN (oggi non più in uso).
È possibile trovare oggi un analogo digitale? Purtroppo la sensibilità di un fotoelemento nel raccogliere fotoni (radiazione luminosa) è costante. Quindi, se volessimo utilizzare la definizione analogica di ISO, dovremmo dire che questi non cambiano dato un determinato sensore CCD o CMOS.
Però un nuovo concetto è stato introdotto nel mondo digitale: l’amplificazione. Un segnale generato da un fotoelemento può (deve) venire amplificato ed il numero di ADU finali associato al pixel sarà proporzionale al numero di fotoni realmente incidenti sul fotoelemento. La costante di proporzionalità è appunto il fattore di amplificazione del segnale. Come il volume per una radio, amplificando maggiormente il segnale di un fotoelemento sarà possibile raccogliere le sfumature più deboli e “vedere” quei pochi fotoni che hanno raggiunto il nostro sensore. A parità di tempo di esposizione, aumentando l’amplificazione il sensore diventerà pertanto più sensibile alla radiazione luminosa. Ecco quindi trovato un analogo al concetto di ISO, noto oggi come ISO equivalente o semplicemente ISO.
Per aumentare la sensibilità delle pellicole fotografiche si aumentava fisicamente la grandezza degli agglomerati di nitrato di Argento presenti sulla pellicola (noti come grani) che fornivano pertanto delle immagini meno continue. Si diceva così che pellicole ad alti ISO presentavano una “grana” maggiore.
Con la nascita della fotografia digitale il concetto di grana era destinato a sparire ma un nuovo fenomeno mostrava caratteristiche analoghe: il rumore elettronico. Infatti un amplificatore non è in grado di distinguere un segnale da un rumore (per esempio termico) e quindi amplificando il primo amplifica inevitabilmente il secondo. A differenza della grana che rendeva comunque l’immagine “morbida”, il rumore elettronico è random e genera un disturbo di fondo molto fastidioso dal punto di vista estetico.

Esempio di "grana" digitale (a sinistra) e analogica (a destra)

 Come avrete quindi imparato dalla lettura di questo articolo, ISO e grana hanno oggi definizioni completamente diverse da quelle utilizzate in passato. Il massimo valore di ISO di una DSLR sta aumentando sempre più anche se una piccola nota è ancora necessaria. Infatti a parità di ISO due fotocamere digitali possono comportarsi in modo completamente differente. Infatti il rumore elettronico non dipende solo dal fattore di amplificazione ma anche dalla qualità del fotoelemento, dell’ADC e dell’amplificatore stesso. Ecco quindi come una posa a 400 ISO effettuata con una Canon EOS 40D può avere qualità maggiore di una stessa effettuata con una Canon EOS 500D. Inoltre ricordiamo che amplificatori di buona qualità permettono la regolazione fine del fattore di amplificatore che si traduce in una maggiore disponibilità di valori di ISO.
Essendo il rumore elettronico legato anche al rumore termico del fotoelemento, ovvero al suo surriscaldamento, tempi di esposizione lunghi possono portare ad una diminuzione della qualità dell’immagine. Per una buona ripresa è quindi necessario utilizzare ISO bassi, tempi di esposizione corti e componenti elettronici di ottima qualità. Ovviamente questo non è sempre possibile e sarà l’oggetto ad esempio dell’articolo “gli ISO e l’immagine astronomica”. Test per verificare la qualità dell’elettronica di fotocamere digitali sono riportati nella sezione ASTROtecnica. Se volete testare la vostra DSLR scrivete a davide@astrotrezzi.it .