1

Sole – 16/11/2024

Telescopio o obiettivo di acquisizione (imaging telescope or lens): Rifrattore Acromatico (Achromatic refractor) Skywatcher AC EvoStar 120mm f/8.3

Camera di acquisizione (Imaging camera): ToupTek 678M [2.0 μm]

Montatura (Mount): SkyWatcher EQ5

Telescopio o obiettivo di guida (Guiding telescope or lens): non presente (not present)

Camera di guida (Guiding camera): non presente (not present)

Riduttore di focale (Focal reducer): non presente (not present)

Software (Software): AutoStakkert 4.0.11 + Adobe Photoshop 26.0.0 + Topaz Sharpen AI 4.1.0

Accessori (Accessories): Prisma di Herschel APM 2″ (Herschelwedge APM 2″)

Filtri (Filter): ND3.0, polarizzatore, Baader UV/IR Cut, Baader Solar Continuum 7.5 nm.

Risoluzione (Resolution): 3840 x 2160 (originale/original), 3840 x 2160 (finale/final)

Data (Date): 16/11/2024

Luogo (Location): Briosco – MB, Italia (Italy)

Pose (Frames): Mosaico di immagini da 1000 frame (1000 frames each mosaic)

Calibrazione (Calibration): non presente (not present)

Fase lunare media (Average Moon phase): 99.3%

Campionamento (Pixel scale): 0.413224 arcsec/pixel arcsec/pixel

Focale equivalente (Equivalent focal lenght): 1000 mm

Note:

Sole – 01/11/2024




filtri per camere a colori e OWB

I sensori a semiconduttore che costituiscono il cuore delle reflex digitali e dei CCD astronomici sono sensibili non solo alla parte “visibile” dello spettro elettromagnetico ma anche al vicino infrarosso ed ultravioletto (si legga ad esempio l’articolo Efficienza Quantica). Sebbene la radiazione UV venga quasi completamente riflessa (e quindi filtrata) dalle lenti che costituiscono i nostri obiettivi fotografici e telescopi, la radiazione infrarossa attraversa imperturbata il sistema ottico raggiungendo direttamente il sensore. Persino i filtri che costituiscono la matrice di Bayer (RGB) dei più comuni sensori a colore sono piuttosto trasparenti alla radiazione infrarossa.

Ma perché questa radiazione è così dannosa? Il problema è che il piano focale dell’infrarosso è diverso da quello della luce visibile generando così aloni intorno alle nostre immagini. Proprio per ridurre questa “fastidiosa” componente della radiazione nonché altri difetti quali l’effetto Moiré e l’aliasing, gran parte delle aziende produttrici di reflex digitali, tra le quali Canon e Nikon, hanno deciso di montare di fronte al sensore a semiconduttore una serie di filtri IR/UV cut (vedi articolo Filtri IR/UV-cut e luminanza).

In particolare Canon (così come Nikon) monta due filtri IR/UV cut denominati Low Pass Filter (LPF). Il filtro LPF#2, noto anche come hot mirror, è il primo che la luce incontra ed è quello che taglia gran parte della radiazione infrarossa. Il secondo LPF#1 si trova invece proprio di fronte al sensore e, oltre a filtrare la radiazione UV ed infrarossa rimanente, protegge quest’ultimo dalla polvere. Le curve di trasmissione dei filtri LPF per le fotocamere Canon EOS 40D e Nikon D700 sono mostrate in figura 1. Come si vede la risposta di questi filtri è molto simile per le due case produttrici di reflex digitali.

Figura 1: curva di trasmissione per i filtri LPF nel caso delle reflex digitali Canon EOS 40D e Nikon D700

Si può osservare da figura 1 come questi filtri, ed in particolare LPF#2 tagli in maniera sostanziale la radiazione a 656.3 nm (linea Hα), di fondamentale importanza in astrofotografia dato che proprio in quella lunghezza d’onda emettono gran parte delle nebulose.

Proprio per questo motivo, gran parte degli astrofotografi modificano la propria fotocamera digitale rimuovendo o sostituendo il filtro LPF#2 con uno in grado di far passare le lunghezze d’onda intorno ai 656.3 nm e allo stesso tempo bloccare la radiazione infrarossa. Nel primo caso di parla di rimozione del filtro mentre nel secondo caso modifica Baader dal nome di una delle maggiori aziende produttrice di filtri per l’astronomia.

In ogni caso la rimozione completa del filtro LPF#2 non porta ad un forte degradamento dell’immagine dato che il filtro LPF#1 taglia comunque gran parte della radiazione infrarossa.

Se si vuole invece avere il sensore “nudo” ridonandogli la capacità di vedere sia nel vicino UV che infrarosso, allora è necessario rimuovere anche il filtro LPF#1. Questo tipo di modifica si chiama modifica Full Spectrum. Anche in questo caso il filtro LPF#1 può essere rimosso o sostituito con un filtro trasparente al fine di proteggere il sensore dalla polvere.

Figura 2 mostra come la rimozione del filtro LPF#2 o la sostituzione con un filtro Baader siano praticamente equivalenti se il filtro LPF#1 viene mantenuto in sede. La soluzione ideale in termini astrofotografici si ottiene rimovendo il filtro LPF#1 e sostituendo il LPF#2 con un filtro Baader o alternativamente uno di luminanza (vedi articolo Filtri IR/UV-cut e luminanza). Ovviamente in questo caso perderemmo completamente la funzione di auto-focus e pulizia del sensore.

Figura 2: risposta spettrale per vari filtri. In particolare LPF1 corrisponde alla rimozione completa del filtro LPF#2. Si riportano come esempio i filtri IR/UV cut quali il filtro Baader e la luminanza L prodotta dalla ditta Astronomik. In nero è indicato anche la risposta spettrale (indicativa) di un sensore Canon generico privato dei filtri LPF#1 e LPF#2. In verde infine è indicata la linea Hα.

Modificando la risposta spettrale di una reflex digitale, si va ovviamente anche a modificare il bilanciamento del bianco. Nel caso in cui la vostra fotocamera sia stata modificata Baader o avete rimosso il filtro LPF#2, esiste la possibilità di montare il filtro OWB (original white balance) in grado di rigenerare la risposta spettrale originale con annesso bilanciamento del bianco.

Purtroppo in molti casi la modifica delle reflex digitali comporta la perdita dell’auto-focus. Informatevi bene quindi prima di modificare la vostra fotocamera.

Prima di concludere vogliamo far notare come una reflex modificata Baader o con rimozione del filtro (LPF#2) non richiede l’utilizzo di filtri IR/UV cut o luminanza aggiuntivi. Nel primo caso addirittura tali filtri porterebbero ad una riduzione della capacità della fotocamera di raccogliere la luce nel rosso / vicino infrarosso. L’utilizzo di filtri IR/UV cut è invece fondamentale quando si utilizzano webcam astronomiche per riprese planetarie (controllate che non siano già montati dalla ditta madre). Riportiamo a titolo d’esempio la risposta spettrale della camera a colori Imaging Source DBK 21AU618.AS (figura 3). Come si vede i filtri RGB che vanno a costituire la matrice di Bayer del sensore lasciano passare parte della radiazione infrarossa. Questa, come detto in precedenza, va ad inficiare la qualità ottica delle nostre immagini.

Figura 3: risposta spettrale dei vari elementi fotosensibili (RGB) per la camera Imaging Source DBK 21AU618.AS

Misure spettroscopiche relative a reflex Canon EOS originali, modificate Baader, rimozione filtro LPF#2 e Full Spectrum saranno realizzate prossimamente da ASTROtrezzi con reticolo di diffrazione. Chi fosse interessato a partecipare alla campagna di misura/analisi può scrivere a ricerca@astrotrezzi.it . Si ringrazia Marco Gargano per il supporto tecnico (Figura 1 – curve relative alla fotocamera digitale Nikon D700; tutti i diritti sono riservati – vietata la pubblicazione/distribuzione).




Filtri IR/UV cut e luminanza

Alla parola “filtro”, spesso si associa un colore. Questo perché la maggior parte dei filtri seleziona solo determinate lunghezze d’onda riflettendo le altre che quindi andranno ad assegnare uno specifico colore a ciascun filtro. Eppure esistono filtri trasparenti ovvero in grado di far passare tutta la radiazione visibile. Se a passare è però tutta la radiazione visibile, quale utilità hanno allora questi filtri?

Per comprenderlo dobbiamo ricordare che la luce visibile è solo una piccola parte di quella che prende il nome di radiazione elettromagnetica. In particolare un sensore a semiconduttore, come CCD e CMOS sono sensibili a radiazioni di lunghezza d’onda compresa tra circa 350 e 1100 nm. Ricordando che la luce visibile ai nostri occhi ha lunghezza d’onda compresa tra circa 390 e 700 nm, vuol dire che i sensori a semiconduttori osservano ben “oltre il visibile” ed in particolare nelle frequenze del vicino ultravioletto (UV, tra 350 e 390 nm) e del vicino infrarosso (IR, tra 700 e 1100 nm).

Se quindi ora vogliamo che un sensore a semiconduttore “veda” solo la radiazione visibile allora è necessario applicare a questo un filtro in grado di bloccare la radiazione UV e IR. Questo filtro è noto con il nome di luminanza (L), la cui curva di trasmissione la versione prodotta dalla ditta Astronomik è riportata in figura 1. Il filtro di luminanza può essere utilizzato o per aumentare la qualità ottica dell’immagine (nei rifrattori la radiazione IR e UV non viene focalizzata correttamente andando quindi ad inficiare la qualità ottica dello strumento) oppure nella composizione LRGB (per maggiori informazioni si legga l’articolo La tecnica LRGB).

Figura 1: (A) curva di trasmissione le filtro L Astronomik. Si può osservare come questo filtro copra tutto il range spaziato dai filtri RG e B della medesima marca (vedi articolo “Filtri colorati ed RGB”). (B) come appare il filtro L Astronomik da due pollici per telescopi astronomici.

Sul mercato esistono inoltre una notevole varietà di filtri del tutto simili a quelli di luminanza che prendono il nome di filtri IR-cut ovvero taglia infrarosso. In realtà, come per il filtro L, quasi gli IR-cut tagliano in realtà anche la componente ultravioletta della luce rilevabile da un sensore a semi-conduttore (talvolta infatti vengono riportati come filtri IR/UV cut). Esempi di curve di trasmissione per filtri IR-UV cut sono riportati in figura 2.

Figura 2: Curva di trasmissione per filtri IR/UV cut prodotti o venduti dalle aziende Astronomik, Baader Planetarium e Tecnosky. La regione dello spettro colorata in grigio rappresenta la regione del visibile. In nero tratteggiato è riportata la curva di trasmissione per il filtro L Astronomik. Si può osservare come tutti questi filtri coprano completamente lo spettro del visibile con code residue, più o meno lunghe, nel vicinissimo infrarosso e ultravioletto.

Quanto detto in questo articolo vale unicamente per camere CCD astronomiche monocromatiche. Reflex digitali e camere CCD a colori sono provviste ovviamente di un set di microfiltri RGB (matrice di Bayer) oltre che, talvolta, di uno o più filtri UV/IR cut montati di fronte al sensore. In questi casi l’utilizzo del filtro IR-cut o di Luminanza può risultare superfluo se non addirittura controproducente. Per maggiori dettagli si legga l’articolo “Filtri per camere a colori e OWB”.




I filtri astronomici

L’utilizzo dei filtri in astrofotografia è fondamentale, specialmente se si utilizzano CCD astronomiche e/o si riprende da zone soggette ad elevato inquinamento luminoso. Lo scopo dei filtri ottici è quello di selezionare regioni più o meno ristrette dello spettro elettromagnetico di un determinato tipo di polarizzazione oppure semplicemente diminuire l’intensità della sorgente luminosa. Nel primo caso si possono utilizzare materiali in grado di assorbire (filtri ad assorbimento) o riflettere (filtri a riflessione tra cui i filtri interferenziali o dicroici) determinate lunghezze d’onda. Nel secondo caso invece vengono sfruttate le proprietà di determinati materiali in grado di selezionare una determinata polarizzazione della luce (polarizzatori) ed infine nel terzo caso si utilizzano materiali in grado di riflettere parzialmente tutte le lunghezze d’onda del visibile (filtri neutri). I filtri ad assorbimento e riflessione sono caratterizzati da una quantità detta curva di trasmissione che rappresenta la capacità del filtro di far passare una determinata lunghezza d’onda della radiazione luminosa. Queste curve possono o non possono essere normalizzate ad uno (o 100%). I filtri neutri invece sono identificati dalla capacità o meno del filtro di far passare la luce visibile noto come coefficiente di trasmissione. Coefficiente di trasmissione e curva di trasmissione sono concetti differenti anche se ovviamente legati tra loro. Il primo dice quanta luce passa dal filtro, la seconda invece indica quale è la probabilità per tale luce di possedere una determinata lunghezza d’onda una volta passata attraverso filtro. Il valore assoluto del logaritmo in base dieci del coefficiente di trasmissione è detta densità ottica, grandezza fondamentale per la scelta dei filtri neutri. I polarizzatori invece hanno densità ottica variabile a seconda dell’angolo tra la polarizzazione della luce incidente e quella del polarizzatore, detta legge di Malus.

In questo post e nei seguenti analizzeremo in dettaglio quasi tutti i filtri utilizzati in astrofotografia, ed in particolare:

Purtroppo non verranno presi in esame i filtri Hα per osservazioni solari a  cui sarà dedicata una sezione apposita.