1

Il Pianeta Giove

Avere delle informazioni dettagliate ed aggiornate sui pianeti del Sistema Solare è, nell’epoca di internet, piuttosto semplice. Basta andare su un motore di ricerca e digitare il nome di un pianeta per trovare decine di migliaia di articoli dettagliati in lingua italiana e/o inglese. ASTROtrezzi vuole però offrirvi qualcosa di diverso, ovvero accompagnarvi nella scoperta del Sistema Solare attraverso l’osservazione e la ripresa astrofotografica del cielo. Pertanto il nostro punto di partenza non saranno numeri ma immagini, osservate attraverso gli oculari o i monitor LCD delle nostre fotocamere e PC. In particolare, partiremo in questo articolo con il pianeta più grande del Sistema Solare: Giove.

A differenza delle stelle che mantengono pressoché invariata la loro posizione relativa in cielo durante l’anno, i pianeti si muovono tra le stelle. Il termine pianeta deriva infatti dal greco antico, dove stava a significare “stella vagabonda”, riflettendo la peculiarità di questi oggetti apparentemente identici a stelle, di vagare tra le “altre” stelle fisse. Quindi, seppur noti fin dall’antichità, i pianeti erano considerate originariamente stelle “particolari” e non mondi simili alla Terra così come li conosciamo oggi. Per motivi prospettici, tutti i pianeti si muovono lungo una regione ben precisa del cielo, attraversando quelle che prendono il nome di costellazioni dello zodiaco. Ecco quindi che lo zodiaco e i pianeti, in quanto “oggetti” peculiari, ricoprirono subito significati in ambiti religiosi e legati alla superstizione (profezie ed oroscopi).

Figura 1: congiunzione Giove - Venere del 30 giugno 2015. Visto da Terra, Giove è (mediamente) il pianeta più luminoso dopo Venere.

Ancora oggi possiamo osservare ad occhio nudo sei dei sette pianeti del Sistema Solare (Terra esclusa) anche se, a dire il vero, Urano è ormai invisibile da gran parte dei cieli della nostra penisola a causa dell’eccessivo inquinamento luminoso. Di tutti i pianeti, Giove è il più luminoso dopo Venere. La differenza di luminosità tra i vari pianeti è ben visibile durante quei fenomeni astronomici noti come congiunzioni planetarie ovvero quando due o più pianeti si trovano prospetticamente vicini in cielo (Figura 1, congiunzione Giove-Venere del 30 giugno 2015).

Una volta individuato ad occhio nudo il pianeta Giove con l’aiuto di una mappa celeste, di uno smartphone o di un esperto come nelle notti dedicate all’osservazione del cielo a Lo Smeraldino, possiamo iniziare a puntarci contro un binocolo o obiettivo con focale intorno ai 300 mm. Quello che vedrete sarà un piccolo dischetto luminoso circondato da un certo numero di stelline allineate (Figura 2). Il primo è il disco del pianeta che a quegli ingrandimenti non mostrerà particolari evidenti. Le stelline molto probabilmente sono le quattro principali lune del pianeta note come satelliti galileiani: Io, Europa, Ganimede e Callisto. A volte potrete vederne più di quattro ed in tal caso vorrà dire che nel campo ci saranno anche delle stelle di fondo. Nel caso in cui invece le stelline fossero meno di quattro allora significa che alcune lune stanno transitando o di fronte o dietro il disco di Giove. Una volta individuati i satelliti galileiani è possibile determinarne il periodo di rivoluzione intorno a Giove come dimostrato nell’articolo “Studio dei satelliti di Giove con un telescopio amatoriale“.

Figura 2: Giove come visibile attraverso un binocolo o un teleobiettivo.

 Vediamo quindi come già con una piccola strumentazione sia possibile effettuare delle interessanti osservazioni, riprese e persino misure astronomiche amatoriali. Oltre ai quattro satelliti principali, esistono anche satelliti minori come Amalthea, la cui osservazione e ripresa risulta però complessa e sarà a breve oggetto di studio presso Lo Smeraldino.

Un’ultima informazione che possiamo ottenere dall’osservazione ad occhio nudo di Giove è il suo periodo di rivoluzione intorno al Sole. Questo può essere determinato misurando dopo quanto tempo il pianeta ci appare in uno stesso punto del cielo. Per il gigante gassoso questo tempo è pari a circa 12 anni. Utilizzando la legge di Keplero che lega la distanza del pianeta dal Sole al suo periodo di rivoluzione T2 : d3 = costante, otteniamo la proporzione:

TTerra2 : dTerra3 = TGiove2 : dGiove3

ovvero misurando la distanza dal Sole in Unità Astronomiche (1 UA è pari alla distanza Terra – Sole) ed il periodo di rivoluzione intorno al Sole in anni abbiamo:

12 : 13 = 122 : dGiove3

da cui dGiove = 5.24 UA. Basandosi unicamente sulle osservazioni ad occhio nudo, siamo così giunti alla conclusione che Giove si trova ad una distanza dal Sole circa 5 volte maggiore rispetto a quella della Terra. Sapendo che la distanza Terra – Sole è pari a 150 milioni di chilometri, scopriamo che Giove dista circa 800 milioni di chilometri dal Sole.

Proseguiamo ora il nostro viaggio aumentando gli ingrandimenti. Per fare ciò bisogna abbandonare gli strumenti più comuni (binocoli e teleobiettivi) per passare ai ben più potenti mezzi forniteci dall’ottica: i telescopi. Già con un piccolo telescopio è possibile osservare alcuni dettagli del disco planetario: le bande atmosferiche (Figura 3).

Figura 3: Le due bande equatoriali di Giove

Giove è infatti coperto da una spessa atmosfera che ci impedisce totalmente la visione della sua superficie rocciosa. Tale atmosfera è molto complessa e tuttora non ancora compresa a fondo dagli esperti del settore. Quello che sappiamo è che sulla superficie del pianeta si dispongono, parallelamente all’equatore, delle regioni chiare (zone) e scure (bande) alternate. In particolare due regioni scure sono più intense e prendono il nome di bande equatoriali. Oggi sappiamo che le bande, sono strati atmosferici meno densi e con una temperatura più elevata rispetto alle zone. In tali regione il gas fluisce verso il centro del pianeta mentre nelle zone il flusso è contrario. Le zone appaiono più chiare probabilmente a causa della presenza di cristalli di ghiaccio di ammoniaca. Le bande sono confinate da particolari venti detti correnti a getto che possono superare i 400 chilometri orari.

Le bande sono strutture pressoché stabili. Talvolta però è possibile osservare dei fenomeni sporadici, noti come disturbi che ne frammentano il decorso, facendo “scomparire” la banda equatoriale sud. Tali disturbi si manifestano ad intervalli irregolari di 3-15 anni e sono associati alla momentanea (settimane o mesi) sovrapposizione di più strati nuvolosi a quote diverse. ASTROtrezzi ha ripreso un evento di disturbo nel 2010 (Figura 4).

Figura 4: un disturbo ripreso il 02 luglio 2010.

Le scoperte che possiamo fare con un piccolo telescopio però non sono finite! Infatti possiamo stimare le dimensioni del pianeta. Per fare ciò basta misurare il diametro del pianeta così come ripreso con la nostra fotocamere o webcam planetaria. Noto il fattore di scala arcsec/pixel (vedi articolo Misurare il cielo) scopriremo che il diametro apparente massimo del pianeta è all’incirca pari a 50 secondi d’arco.

Sfruttando le leggi della trigonometria nell’approssimazione di angoli piccoli abbiamo che il raggio del pianeta è pari alla distanza Terra – Giove moltiplicata per il raggio apparente di Giove espresso in radianti. Per quel che abbiamo detto prima Giove dista dal Sole 5 UA circa e quindi dalla Terra al minimo 4 UA. Inoltre il raggio apparente del pianeta, pari a 25 secondi d’arco corrispondono a 0.00694 gradi ovvero 0.00012113 radianti (potete utilizzare il tasto di conversione deg-rad presente sulle calcolatrici scientifiche). Moltiplicando i due numeri otteniamo un raggio del pianeta pari a 0.000484 UA che in chilometri corrisponde a circa 70 mila. Ricordando che il nostro pianeta ha un raggio pari a circa 6000 km, questo vuol dire che possiamo disporre quasi 12 Terre lungo il diametro equatoriale di Giove.

Infine, talvolta è possibile osservare il proiettarsi dell’ombra dei satelliti galileiani sul disco di Giove. Questo fenomeno rappresenta sotto tutti gli effetti un’eclissi totale di Sole vista dallo spazio.

Figura 5: eclissi di "luna" su Giove vista da Terra.

Proseguiamo il nostro viaggio alla scoperta del Gigante Gassoso andando ad ingrandire ancora di più il disco del pianeta. Questo può essere fatto visualmente utilizzando oculari con focale sempre minore e fotograficamente aggiungendo alla nostra camera lenti moltiplicative note come lenti di Barlow. A questo punto il gioco diventa tanto interessante quanto duro. Infatti il massimo numero di ingrandimenti che potremo utilizzare sarà determinato principalmente dalla turbolenza atmosferica o seeing (per maggiori informazioni si legga l’articolo “La scala Antoniadi”). Pertanto, al fine di sfruttare al meglio il vostro strumento consigliamo di restare in pianura durante le notti con calma atmosferica, generalmente caratterizzata da foschia. Il massimo lo otterrete in un sottoinsieme di queste notti dove la calma atmosferica sarà presente anche sui monti, dove la trasparenza è maggiore e l’inquinamento luminoso ridotto. Anche se talvolta il seeing potrebbe non essere indecente, sconsigliamo comunque l’osservazione planetaria in notti ventose o da balconi e finestre. Una buona indicazione la otterrete osservando lo scintillio delle stelle ad occhio nudo. Se “luccicano” dedicatevi ad altro, mentre se sono “fisse” è il momento di spingere al massimo i vostri strumenti.

In una serata di seeing buono è possibile così scorgere i dettagli delle bande e delle zone ed in particolare i vortici. Queste sono strutture atmosferiche ruotanti in senso concorde o discorde a quello di rotazione del pianeta (si parla come sulla Terra di cicloni ed anticicloni). A differenza della Terra però su Giove gli anticicloni sono dominanti numericamente. I vortici non sono fenomeni perenni ma hanno una vita che varia da diversi giorni a centinaia di anni.  Gli anticicloni sono di colore chiaro e si dispongono longitudinalmente al disco planetario e tendono a fondersi quando vengono a contatto. I cicloni sono invece di dimensioni inferiore e colore bruno. Esistono comunque due particolari tipi di anticicloni peculiari: la grande macchia rossa e l’ovale BA. Questi due sono di colore rosso a seguito del materiale portato in alta atmosfera dalle profondità del pianeta. La prima ha dimensioni paragonabili a quelle di circa due/tre Terre (provate a misurarle con il vostro telescopio utilizzando la tecnica prima descritta per determinare il diametro di Giove), colore variabile dal bianco al rosa pastello al rosso mattone e venne osservata per la prima volta nel 1665 dall’astronomo Giovanni Cassini (Figura 6). L’ovale BA detta anche piccola macchia rossa si è formato nel 2000 ed ha iniziato a tingersi di rosso nel 2005. Le sue dimensioni stanno via via crescendo ed ormai hanno raggiunto la metà di quelle della grande macchia rossa.

La Grande Macchia Rossa ripresa allo Smeraldino il 18/03/2016.

Infine, ingrandendo sufficientemente il disco del pianeta è possibile determinare utilizzando ad esempio la posizione della macchia rossa, il periodo di rotazione di Giove. Questo risulterà essere pari all’incirca a 9 ore e 55 minuti. Con una velocità di rotazione così elevata, il pianeta mostrerà un evidente schiacciamento ai poli, misurabile amatorialmente come dimostrato nell’articolo Misura dell’ellitticità di Giove.

Questo è quanto è possibile osservare/misurare di Giove e su Giove in condizioni standard (medi/piccoli telescopi e seeing accettabile). In condizioni eccezionali è inoltre possibile riprendere alcuni particolari dei satelliti galileiani.

Infine in rari casi è possibile registrare l’impatto di comete e/o asteroidi sul pianeta. Infatti, data la sua notevole massa, Giove attrae gravitazionalmente su di se gli oggetti di passaggio quali appunto asteroidi e comete.

Con questo abbiamo concluso il nostro viaggio alla scoperta di Giove, basato su pixel, secondi d’arco ed osservazioni dirette… insomma, quello che in fondo è l’Astronomia.




Misurare il cielo

La bellezza suscitata da un’immagine astrofotografica nasconde talvolta una pletora di informazioni scientifiche purtroppo alla mercé dei soli astronomi professionisti. In questo articolo andremo ad analizzare il significato di dimensione angolare degli oggetti celesti ed in particolare vedremo come ottenere questa informazione a partire dalle nostre fotografie amatoriali.

Quando riprendiamo ad esempio una galassia, ci sentiamo spesso dire: “Questa galassia è enorme” oppure “ma che bella galassietta” per indicare una galassia di piccole dimensioni; informazioni soggettive che non ci permettono di effettuare confronti con altre foto scattate da noi stessi o da altri astrofotografi.

Come possiamo fornire una misura oggettiva delle dimensioni di tale galassia?

Iniziamo dal principio, ovvero dalla prima informazione che possiamo ottenere sull’oggetto ripreso: la dimensione in pixel. Questa misura dipenderà sostanzialmente da due fattori: la lunghezza focale del telescopio e le caratteristiche della camera di ripresa. La sola misura in pixel quindi non ci permetterà di avere un confronto diretto tra immagini effettuate in condizioni differenti di ripresa, ma rimane comunque un buon punto di partenza al fine di ottenere una misura oggettiva delle dimensioni del nostro oggetto celeste.

Vediamo quindi come ottenere in pratica tale informazione utilizzando software generici come Photoshop (o simili) o software specifici come PixInsight.

Trovare le dimensioni degli oggetti in pixel

Le dimensioni di un oggetto in pixel possono essere ottenute utilizzando programmi generici di grafica che possiedono la funzione righello, ovvero uno strumento in grado di fornirci in pixel la distanza tra due punti dell’immagine. A titolo di esempio, in Photoshop CS3 è possibile stimare la distanza tra due stelle, cliccando sullo strumento righello (rule) ed andando a disegnare una linea tra i due punti da misurare. La distanza, espressa in pixel sarà riportata in alto, sotto lo spazio dedicato ai menù, nel campo indicato con la lettera L1 (Figura 1).

Figura 1: esempio di misura di dimensioni espresse in pixel

Nell’esempio considerato, la distanza tra le due stelle a lato della galassia M81 è pari a 426.04 pixel. Come dicevamo questa misura dipende ancora da alcuni parametri strumentali come la distanza focale del telescopio e le caratteristiche della camera di ripresa. Infatti la stessa distanza può assumere valori differenti in pixel se il campo fosse stato ripreso con un telescopio più grande o con una camera con dimensioni degli elementi fotosensibili inferiori. Come svincolarci da tutto questo? Bisogna trasformare questa misura in qualcosa di più generale e oggettivo. Per fare ciò andiamo a vedere cos’è una misura angolare.

Misure angolari

Quando guardiamo la volta celeste, stiamo osservando una distribuzione di stelle su una superficie immaginaria che non è “piana” come un foglio di carca ma piuttosto “sferica” come una cupola di una chiesa. Se dobbiamo stimare la distanza tra due punti su un foglio di carta, utilizziamo una misura lineare come può essere una lunghezza espressa in millimetri o centimetri. Quando però la distanza è tra due punti su una sfera, allora si utilizzano quelle che sono le misure angolari ovvero si va a misurare l’angolo compreso tra i due punti in esame. Questo in passato veniva misurato con “goniometri specifici” che potete trovare ancora in alcuni osservatori astronomici. Oggi usiamo appunto le fotografie digitali. L’unità di misura dell’angolo è il grado. Dato che le distanze angolari astronomiche sono spesso molto piccole si è deciso di utilizzare anche i sottomultipli del grado ossia il minuto ed il secondo. Per distinguerli dai minuti e secondi temporali (i sottomultipli dell’ora), si parla spesso di minuti d’arco o arcmin e secondi d’arco o arcsec. Supponiamo ora di avere due stelle separate da un secondo d’arco. Queste due stelle verranno focalizzate dal nostro telescopio sul sensore della nostra fotocamera digitale (reflex o CCD). Quest’ultimo può essere considerato piano e pertanto dotato di dimensioni lineari espresse in millimetri o in unità di elementi fotosensibili ovvero in pixel. A che distanza lineare sul sensore espressa in pixel corrisponderà la distanza angolare celeste di un secondo d’arco? Per rispondere a questo dobbiamo percorrere la strada che ha portato quei raggi dal Cosmo al nostro sensore.

Dal Cosmo al pixel

Per semplicità, consideriamo un telescopio rifrattore costituito da una sola lente biconvessa in grado di focalizzare la luce ad una distanza (lunghezza) focale F. Lo stesso discorso si può estendere a qualsiasi schema ottico. Supponiamo ora che ad una certa distanza “prospettica” dal telescopio ci siano due stelle separate tra loro da un angolo θ. Da un punto di vista geometrico, il nostro telescopio genererà sul sensore l’immagine delle due stelle separate da una distanza lineare d (vedi Figura 2).

Figura 2: Relazione geometrica tra l’angolo θ e la distanza d.

Dal punto di vista matematico possiamo trovare una relazione geometrica tra θ e d ed in particolare:

risolvendo rispetto a d otteniamo:

La distanza d dovrà essere espressa nelle stesse unità di misura della lunghezza focale F e quindi in mm. Se ora vogliamo convertire d da mm in pixel dobbiamo dividere per la dimensione di un elemento fotosensibile espresso anch’esso in mm. Nel caso della foto di Figura 1, la camera di ripresa era una ATIK 383L+ monocromatica con elementi fotosensibili quadrati delle dimensioni di 5.4 micron ossia 5.4 x 10-3 mm. Quindi detta l la dimensione in mm di un elemento fotosensibile (pixel) abbiamo:

Prima di procedere con il calcolo notiamo che l’angolo θ deve essere espresso in radianti. Questa strana unità di misura può essere convertita in gradi utilizzando la seguente equivalenza:

E ricordando che 1° sono 3600 secondi d’arco otteniamo:

Sostituendo quindi l’espressione di θ in quella per il calcolo di d in pixel abbiamo:

Quindi nelle condizioni di ripresa di Figura 1 con lunghezza focale del telescopio pari a F = 750 mm avremo che un secondo d’arco corrisponderà ad una distanza lineare espressa in pixel di:

Quindi il fattore di scala r della nostra immagine astrofotografica sarà 1 arcsec / 0.67 pixel ossia:

che nel caso in esame è 1.49 arcsec/pixel. Questo fattore di scala è importantissimo perché ci permette di stimare le dimensioni dei nostri oggetti in secondi d’arco data la loro estensione misurata in pixel. Proviamo ora a verificare che quanto appena detto sia corretto utilizzando due tecniche differenti: la prima prevede l’utilizzo di Stellarium mentre la seconda di PixInsight.

Stellarium

Stellarium è un planetario gratuito completo di importanti funzioni tra cui la misura angolare delle distanze. Quindi date due stelle possiamo misurarne con Stellarium la loro distanza angolare. Quindi, assumendo di aver fotografato una galassia, possiamo utilizzare le stelle di campo per determinare il fattore di scala r e quindi successivamente la dimensione angolare della galassia data la sua lunghezza espressa in pixel. Per fare ciò apriamo il software Stellarium e apriamo la “Finestra di configurazione” cliccando sull’icona della chiave nel menù di sinistra. Andiamo quindi sul tab “Plugins” e quindi scegliamo “Misura angolo”. Spuntiamo il quadratino “Carica all’avvio” e riavviamo il programma (vedi Figura 3).

Figura 3: la finestra di configurazione di Stellarium

Una volta riavviato il programma, ci troveremo una icona a forma di “angolo sotteso” nel menù in basso. Clicchiamoci sopra e disegniamo una retta sul campo stellare. Il programma disegnerà una linea continua indicando la misura angolare espressa in gradi, primi e secondi. Nel caso delle due stelle in esame di Figura 1 otteniamo 10 arcmin 36.94 arcsec, come mostrato in Figura 4.

Figura 4: La distanza angolare tra le stelle di Figura 1

Se vogliamo esprimere tutto in secondi d’arco dobbiamo ricordare che 1 arcmin = 60 arcsec e 1° = 3600 arcsec, quindi la distanza tra le due stelle risulterà essere 636.94 arcsec. Se ora dividiamo questo numero per la misura effettuata precedentemente sulla nostra foto in pixel, ossia 426.04 pixel abbiamo un fattore di scala r pari a 1.49 arcsec/pixel, in perfetto accordo con quanto calcolato precedentemente per via teorica. Ovviamente si può raffinare il calcolo facendo più misure utilizzando le stelle di campo presenti nel fotogramma. Ciascuna misura dovrà poi essere raffigurata in un grafico θ(arcsec) in funzione di d(pixel). Il coefficiente angolare della retta, imposto il passaggio per lo zero, sarà il fattore di scala r.

 

PixInsight

PixInsight è un software specifico per l’elaborazione di immagini astronomiche. Grazie alla professionalità del team di sviluppatori, oggi è possibile usare PixInsight non solo come strumento “estetico” ma anche scientifico grazie ad un suo script noto come ImageSolver. Prima di tutto è quindi necessario accedere a PixInsight ed aprire un’immagine astronomica sia essa un singolo frame o una somma di più immagini opportunamente calibrate. Dopodiché apriamo ImageSolver andando sul menù Script → ImageAnalysis →ImageSolver. Si aprirà una finestra intitolata Image Plate Solver Script (vedi figura 5).

Figura 5 : la finestra dello script Image Plate Solver

 A questo punto dovrete inserire delle informazioni chiave: le coordinate del vostro oggetto (meglio del centro del fotogramma) spuntando la casella S se le coordinate di declinazione sono negative, l’epoca di riferimento delle coordinate (2000 o attuali), la lunghezza focale del vostro telescopio espressa in mm (spuntate il pallino relativo) e la dimensione dei pixel della vostra camera di ripresa in micron. Successivamente nella sezione “Model Parameters” spuntate “VizieR star catalog:” e dal menù a tendina selezionate (preferibilmente) UCAC3 ed il server francese CDS . Come “Limit magnitude” imponiamo il valore 17. Trascuriamo completamente la sezione “Advanced parameters” lasciando le impostazioni preimpostate. Se non conoscete le coordinate dell’oggetto ripreso potete cliccare sull’icona che rappresenta una lente di ingrandimento. Si aprirà una nuova finestra dal titolo Online Coodinates Search (Figura 6).

Figura 6: lo strumento Online Coordinates Search

A questo punto inserite nel campo “Object identifier” il nome dell’oggetto che avete ripreso e come server utilizzare (preferibilmente) il francese CDS. Cliccando sulla lente di ingrandimento nel campo “Names” ritroverete il vostro oggetto e le sigle ad esso associate. Clicchiamo sul nome e quindi premiamo il tasto OK. Le coordinate dell’oggetto, come per magia appariranno nella sezione “Image parameters” della finestra Image Plate Solver Script. Clicchiamo quindi su OK e aspettiamo che PixInsight faccia il suo lavoro. Al termine di una serie di calcoli, nella “Process Console” troveremo direttamente il nostro fattore di scala espresso in arcosecondi per pixel (Figura 7).

Figura 7: il risultato ottenuto utilizzando PixInsight e lo script ImageSolver

Utilizzando PixInsight otteniamo pertanto un fattore di scala r pari a 1.47 arcsec/pixel, in buon accordo con quanto calcolato precedentemente per via teorica e misurato utilizzando la combinazione di software Photoshop CS3 + Stellarium. La discrepanza di circa l’1% tra il valore teorico e quello fornito da PixInsight può essere dovuto alla non planarità del piano focale (coma) che farà assumere valori diversi di r a seconda della posizione nel fotogramma.

Conclusioni

In questo articolo abbiamo mosso i primi passi verso la “misura del Cosmo”. In particolare abbiamo imparato a calcolare e/o misurare il fattore di scala r ossia il legame tra la misura lineare espressa in pixel di un oggetto o di una distanza e la misura angolare espresse in secondi d’arco. In questo modo potremo fornire delle misure oggettive delle dimensioni degli oggetti ripresi, fare confronti con altre immagini riprese da noi o da altri astrofotografi nonché misurare lo spostamento di un oggetto celeste come comete e asteroidi. Un primo passo verso l’astrometria amatoriale.