Il campionamento
Nel post “Il potere risolutivo“, abbiamo visto come la risoluzione delle nostre immagini astronomiche dipendano dalla qualità ottica dello strumento, dalla turbolenza atmosferica e dal limite di diffrazione stimato utilizzando il criterio di Rayleigh. In particolare la risoluzione complessiva θ di un telescopio sarà data dalla somma in quadratura di tutti questi contributi.
Ma non è tutto. L’immagine digitale è infatti costituita da un insieme discreto di punti (quadratini) noti come pixel e che non sono altro che la mappatura degli elementi fotosensibili presenti nel sensore (CMOS o CCD). Quindi, quando riprendiamo una fotografia digitale, trasformiamo quella che è un’immagine continua (l’immagine reale dell’oggetto) in un’immagine discreta (l’immagine visualizzata sullo schermo del nostro PC). Tale processo di discretizzazione obbedisce alle leggi della teoria dei segnali che definiscono il numero minimo di pixel necessari al fine di non perdere informazioni ovvero la risoluzione del nostro telescopio (campionamento). Questo è fissato dal criterio di Nyquist che stima come 3.33, il minimo numero di pixel necessari per coprire la FWHM (Full Width at Half Maximum) della risoluzione del nostro telescopio senza perdere informazioni sull’immagine (vedi Figura 1 e 2). Ricordiamo che FWHM è l’altezza a metà altezza di una distribuzione gaussiana ovvero 2.355 volta la deviazione standard σ.
Se ora supponiamo di possedere un telescopio otticamente corretto e di porci nelle condizioni di riprendere un oggetto celeste puntiforme in assenza di turbolenza atmosferica, allora la risoluzione complessiva del nostro strumento si ridurrà al limite di diffrazione α.
Data la FWHM associata alla risoluzione del nostro strumento allora è possibile stimare la dimensione massima dei pixel al fine di ottenere un buon campionamento dell’immagine ovvero FWHM/3.33. Se i pixel risultassero più grandi allora l’immagine risulterebbe sottocampionata ovvero perderemmo informazioni sull’oggetto mentre con pixel più piccoli otterremmo immagini di grandi dimensioni ma senza conseguente aumento di dettagli (immagine sovracampionata).
Proviamo quindi a stimare le dimensioni che deve possedere un elemento fotosensibile (pixel) per ottenere immagini ben campionate con un telescopio Newton da 150mm di diametro a f/5 per luce verde (dove solitamente si ha la massima efficienza quantica).
Innanzitutto dobbiamo calcolare la risoluzione lineare e non angolare dello strumento. Per fare questo basta solo moltiplicare α(rad) per la lunghezza focale F del telescopio espressa in micron (nel nostro caso F = 750000 μm). Il risultato per la luce verde risulta essere α(μm) = 3.33 μm. Questa però non è la FWHM ma la larghezza del primo anello del disco di Airy dal picco centrale. È possibile calcolare la deviazione standard della distribuzione gaussiana associata al disco di Airy come:
σ(μm) = 0.34493 α(μm)=1.15 μm
Prima di applicare il criterio di Nyquist è necessario calcolare la FWHM associata a σ(μm) ovvero:
FWHM = 2.355 σ(μm) = 2.70 μm
Quindi la dimensione massima dei pixel necessari per ottenere un buon campionamento dell’immagine è FWHM/3.33 = 0.81 μm. Si può quindi facilmente notare come tutti i pixel oggi in commercio offrano immagini sottocampionate.
Pertanto oggi nessun telescopio è praticamente in grado di raggiungere fotograficamente il relativo limite di diffrazione. Ovviamente la situazione “reale” è molto differente dato che la FWHM non è determinata unicamente dalla risoluzione teorica ma anche dalla qualità ottica dello strumento e dalla turbolenza atmosferica. È proprio quest’ultima in grado di aumentare la risoluzione complessiva dello strumento dai 3.33 μm forniti dal limite di diffrazione ai 11.41 μm complessivi (turbolenza media italiana pari a 3 arcsec). Malgrado questo in molti casi l’immagine risulta comunque sottocampionata.
Possiamo ora considerare il problema opposto, ovvero quale è la risoluzione efficace basata sul criterio di Nyquist associata ad un sensore con pixel di una certa dimensione d. A titolo d’esempio consideriamo una Canon EOS 500D dotata di pixel da d = 4.3 μm. Se consideriamo il criterio di Nyquist al fine di ottenere il massimo dal nostro strumento dobbiamo avere una risoluzione complessiva con FWHM associata pari a:
FWHM = 3.33 d = 14.32 μm
A questa, utilizzando le relazioni precedenti, possiamo associare una deviazione standard σ(μm) = 6.080 μm e quindi una risoluzione complessiva lineare pari a θ(μm) = 17.6275 μm.
Questa risoluzione complessiva lineare deve essere sempre superiore al limite di diffrazione. Nel caso fosse inferiore allora otterremmo immagini ben campionate ma senza dettagli aggiuntivi.
Al fine di calcolare la risoluzione complessiva angolare è necessario conoscere la focale dello strumento utilizzato che nel nostro caso è F = 750000 μm. Quindi:
θ(rad) = θ(μm) / F(μm) = 2.3e-5 rad = 4.85 arcsec
come si vede questo valore è ben superiore ai 0.92 arcsec forniti dal limite di diffrazione.
Quindi un telescopio Newton da 150mm di diametro e 750mm di focale fornirà con una Canon EOS 500D buone immagini di oggetti con dimensioni angolari pari ad almeno 4.85 arcsec. È possibile osservare come la turbolenza atmosferica non influenzi immagini riprese a questa lunghezza focale (Figura 3).
È possibile però utilizzare lenti addizionali (di Barlow) in grado di aumentare la focale del nostro telescopio mantenendone ovviamente invariato il diametro. Calcoliamo quindi la focale massima associata al nostro telescopio in grado di fornire una risoluzione pari al limite di diffrazione. Quindi:
F(μm) = θ(μm)/α(rad) = 17.6275 μm / 4.4e-6 rad = 3’968’716 μm
corrispondente ad una lunghezza focale F(mm) pari a 3969 mm che si può ottenere applicando una lente di Barlow 5x.
Riassumendo, nel nostro caso utilizzando il telescopio Newton a fuoco diretto con una Canon EOS 500D otterremo immagini sottocampionate con risoluzione angolare efficace pari a 4.85 arcsec.
Applicando al medesimo telescopio una lente di Barlow 5x avremo un’immagine ben campionata con risoluzione angolare efficace pari al limite di diffrazione (0.92 arcsec). Ovviamente sarà impossibile praticamente raggiungere tale risoluzione a causa della turbolenza atmosferica. Nel caso in esame le lunghezze focali utili in condizioni di turbolenza atmosferica saranno:
- perfetta calma atmosferica (0.4 arcsec): 3637 mm – Barlow 5x
- calma atmosferica (1 arcsec): 2681 mm – Barlow 4x
- condizioni atmosferiche standard (3 arcsec): 1159 mm – Barlow 1.5x
- elevata turbolenza atmosferica (5 arcsec): 715 mm
Si può facilmente notare come in condizioni di elevata turbolenza atmosferica l’utilizzo di lenti di Barlow con questo strumento è sostanzialmente inutile. È possibile rifare i calcoli riportati in questo post per qualsiasi telescopio e sensore di ripresa. Le dimensioni dei pixel espressi in micron sono riportati in numerosi siti di fotografia (astronomica e non). Ricordiamo inoltre che il sovracampionamento non comporta nessuna perdita di informazioni e quindi è favorito al sottocampionamento. Il sottocampionamento invece può essere utile nel caso di oggetti molto deboli. Infatti dato che il numero di fotoni emessi dagli oggetti celesti è costante, si ottiene un migliore rapporto segnale/rumore aumentando il numero di fotoni per pixel ovvero le dimensioni del pixel stesso.
Infine, nel caso di eccessivo sovracampionamento è possibile, nel caso di CCD astronomiche, unire più pixel. Questo processo noto come binning permette di accorpare più pixel che lavorano in sinergia come fossero un solo elemento fotosensibile. Allo stesso tempo prestate attenzione ad utilizzare binning elevato quando non necessario ottenendo un eccessivo sottocampionamento. In tal caso oggetti di piccole dimensioni angolari come galassie o sistemi stellari multipli si ridurranno a semplici puntini (pixel) luminosi privi di struttura.