1

C/2023 A3 (Tsuchinshan-ATLAS) – 31/10/2024

Telescopio o obiettivo di acquisizione (imaging telescope or lens): Rifrattore ED (ED reftactor) Tecnosky Carbon Fiber 80mm f/7

Camera di acquisizione (Imaging camera): CentralDS 600D II Pro [4.3 μm]

Montatura (Mount): SkyWatcher NEQ6

Telescopio o obiettivo di guida (Guiding telescope or lens): Rifrattore acromatico (refractor) Svbony 60mm f/4

Camera di guida (Guiding camera): ASI 120 MM Mini [3.75 μm]

Riduttore di focale (Focal reducer): riduttore/spianatore 0.8x a quattro elementi (four elements 0.8x reducer/field flattener)

Software (Software): PixInsight 1.8.9 + Adobe Photoshop 25.4.0 + Topaz Sharpen AI 4.1.0 + Topaz DeNoise AI 3.0.3 + StarXTerminator 2.2.0 + BlurXTerminator 2.0.0 + NoiseXTerminator 1.2.0

Accessori (Accessories): non presente (not present)

Filtri (Filter): IDAS D1 2″

Risoluzione (Resolution): 5184 x 3456 (originale/original), 5016 x 3224 (finale/final)

Data (Date): 31/10/2024

Luogo (Location): Varenna – LC, Italia (Italy)

Pose (Frames): 30 x 180 sec at/a 800 ISO

Calibrazione (Calibration): 150 dark, 110 flat dark, 110 bias, 109 flat

Fase lunare media (Average Moon phase): 0.4%

Campionamento (Pixel scale): 2.4904125 arcsec/pixel

Focale equivalente (Equivalent focal lenght): 448 mm

Note:

C/2023 A3 (Tsuchinshan-ATLAS) – 31/10/2024




C/2022 E3 (ZTF) – 28/01/2023

Telescopio o obiettivo di acquisizione (Imaging telescope or lens): Newton SkyWatcher BlackDiamond 150 mm f/5

Camera di acquisizione (Imaging camera): CentralDS 600D II Pro [4.3 μm]

Montatura (Mount): SkyWatcher EQ5

Telescopio o obiettivo di guida (Guiding telescope or lens): Rifrattore acromatico (refractor) Svbony 60mm f/4

Camera di guida (Guiding camera): ASI 120 MM Mini [3.75 μm]

Riduttore di focale (Focal reducer): non presenti (not present)

Software (Software): PixInsight 1.8.8 + Adobe Photoshop 24.2.1 + Topaz Sharpen AI 3.3.5 + Topaz DeNoise AI 3.0.3 + StarXTerminator

Accessori (Accessories): correttore di coma Baader MPCC Mark III (Baader MPCC Mark III coma corrector)

Filtri (Filter): non presenti (not present)

Risoluzione (Resolution): 5184 x 3456 (originale/original), 5202 x 3464 (finale/final)

Data (Date): 28/01/2023

Luogo (Location): Sormano – CO, Italia (Italy)

Pose (Frames): 91 x 60 sec 3200 ISO (cometa), 12 x 60 sec 3200 ISO (stelle)

Calibrazione (Calibration): 30 dark, 71 bias, 81 flat

Fase lunare media (Average Moon phase): 53.1%

Campionamento (Pixel scale):  1.1185 arcsec/pixel

Focale equivalente (Equivalent focal lenght): 750 mm

Note (note):

C/2022 E3 (ZTF) – 28/01/2023




La Chioma Cometaria

Abbiamo visto come con l’avvicinarsi del nucleo cometario al Sole, le zone composte da materiali volatili cominciano ad attivarsi rilasciando nello spazio interplanetario gas e polveri. Questi vanno così a formare una tenue atmosfera, detta chioma, che può raggiungere dimensioni persino superiori ai 100’000 chilometri di diametro. La forma di quest’ultima dipende dalla natura dal materiale di cui il nucleo cometario è composto oltre che dalla dimensione delle polveri.

La chioma cometaria, aumenta al diminuire della distanza dal Sole fino a quando il vento solare non diviene così intenso da essere in grado di “soffiarla via” parzialmente alimentando quella che prendere il nome di coda cometaria. La stessa chioma modifica la sua forma assumendo esternamente quella di una goccia mentre internamente si può osservare la presenza di getti detti fontane.

Ci si potrebbe quindi chiedere quale è la distanza minima dal Sole necessaria affinché il nucleo cometario sia in grado di sviluppare una chioma. La risposta non è semplice dato che, ancora una volta, dipende dalla composizione chimico-fisica del nucleo. Infatti la chioma si sviluppa a seguito della sublimazione degli elementi volatili che avviene a temperature differenti a seconda del materiale considerato. Temperature differenti significano distanze differenti dal Sole, e questo spiega perché lo sviluppo della chioma varia da cometa a cometa. Possiamo comunque determinare un valore medio che si attesta intorno alle 3-4 UA (1 UA = 1 Unità Astronomica = Distanza Terra – Sole = 149’597’870.691 km). L’insieme della chioma e del nucleo cometario forma la testa della cometa.

Di tutti gli elementi e molecole emesse dal nucleo cometario il più leggero, l’Idrogeno, può allontanarsi nello spazio formando quello che prende il nome di nube d’Idrogeno, ovvero un alone esteso alcuni milioni di chilometri intorno al nucleo della cometa. L’Idrogeno che forma tale alone deriva dalla fotodissociazione dei vapori d’acqua ad opera dei raggi UV solari e pertanto lo sviluppo della nube d’Idrogeno avviene solo in determinate comete quando queste raggiungono la minima distanza dalla nostra stella. Purtroppo tale nube d’Idrogeno emette unicamente nell’UV e quindi non è visibile da Terra.

Se si include la nube d’Idrogeno le comete diventano gli oggetti più grandi dell’intero Sistema Solare.




Storia e Caratteristiche Fisiche delle Comete

Non c’è oggetto celeste visibile ad occhio nudo tanto affascinante e misterioso quanto le comete.

Stelle dotate di chioma (da cui l’etimologia del termine) che appaiono improvvisamente nel cielo seguendo traiettorie differenti da quelle seguite dagli altri corpi celesti erranti: i pianeti, il Sole e la Luna.

Sarà proprio per questo motivo che per secoli si credette che le comete fossero un fenomeno atmosferico e completamente distaccato dalla perfezione celeste. Basti pensare che bisogna aspettare l’avvento dell’astronomo Tycho Brahe (1546-1601) per provare sperimentalmente la vera natura cosmica delle comete.

Oggetti imprevedibili e disordinati e come tali ritenuti nel Medioevo portatrici di sventura; ma allo stesso tempo fenomeni affascinanti e grandiosi, tanto che a partire dal 1303 sarà proprio una cometa a diventare la “stella di Natale”. Quello è infatti l’anno in cui Giotto rappresentò per la prima volta una stella cometa sopra la capanna della Natività, forse colpito dal passaggio nel 1301 della cometa di Halley.

Ancora oggi, dopo migliaia di anni, le comete risultano enigmatiche: non tanto per la loro struttura fisica quanto per la loro origine, il loro destino e il legame che queste hanno con la presenza di vita nell’Universo.

Alla luce dei dati forniti dalle numerose sonde interplanetarie quali la Giotto, Vega1, Vega2, Deep Space 1, Stardust e Deep Impact; possiamo oggi descrivere le comete come “palle di neve sporca”, riprendendo così le parole originali dell’ideatore di tale ipotesi: l’astronomo statunitense Fred Lawrence Whipple (1906 – 2004). Secondo questo modello le comete o meglio i nuclei cometari sarebbero costituiti principalmente da ghiacci d’acqua e da altre sostanze mischiate a roccia e polveri. Sono proprio queste ultime a ricoprire la superficie delle comete rendendole tra gli oggetti più scuri del Sistema Solare. Infatti, l’albedo medio delle comete ovvero la capacità di riflettere i raggi solari, è solo il 4% rispetto ad esempio al 7% dell’asfalto!

Le varie parti che costituiscono una cometa. Il nucleo cometario non è visibile, coperto dalla luminosità della chioma.

La dimensione media del nucleo cometario è stimata essere intorno ai 16 chilometri anche se si conoscono comete con dimensioni ben superiori, fino a 40 chilometri.

Ma se le comete sono oggetti così scuri, perché appaiono luminose in cielo? La risposta è semplice. Quando una cometa si avvicina al Sole, la temperatura del nucleo cometario aumenta, e i ghiacci cominciano a sublimare. Tale gas va a formare un’atmosfera temporanea che prende il nome di chioma.

Lo sviluppo della chioma comincia quando la cometa si trova ad una distanza dal Sole inferiore ai 800 milioni di chilometri. La chioma può assumere anche dimensioni molto grandi fino ad oltre un milione di chilometri di diametro. È proprio la chioma a rendere la cometa così luminosa. Quando le comete sono lontane dal Sole allora la chioma cessa di esistere e la luminosità precipita drammaticamente rendendone difficile una loro individuazione. Questo spiega perché gli astronomi scoprono le comete solo a pochi anni dal loro incontro ravvicinato con il Sole.

Ma la nostra stella non è solo responsabile della chioma delle comete. I gas e polveri emessi dal nucleo e che formano la chioma cometaria, vengono colpite dal vento solare che le allontana dalla cometa formando quella che prende il nome di coda. La coda cometaria risulta quindi costituita da polveri che assumeranno una colorazione bianco-gialla dovuta alla riflessione dei raggi solari, e da gas che a seguito del processo di ionizzazione ad opera del vento solare, risulterà di colore azzurro. A seconda del punto di vista e della composizione del nucleo cometario, una cometa può presentare due code: quella di gas in direzione opposta al vento solare e quella di polveri, inclinata lungo la direzione orbitale.

La dimensione della coda cometaria è variabile e può raggiungere persino 1 UA ovvero 150 milioni di chilometri.