1

C/2009 P1 (Garradd) – 31/08/2011

Briosco (MB), 31/08/2011 – C/2009 P1

Ripresa della cometa C/2009 P1 Garradd effettuata con Canon EOS 500D + filtro UHC-E. Somma di 7 light frame da 7 minuti di esposizione (totale 49 minuti di posa) a 400 ISO, telescopio rifrattore Tecnosky ED Carbon Fiber 80 mm f/7 su montatura NEQ 6 Pro, guidata con RC 152 mm f/9.

Calibrazione effettuata con 20 flat, 6 dark, 15 bias. Elaborazione IRIS + Photoshop CS2.

C/2009 P1 (Garradd) - 31/08/2011

Proponiamo anche la versione in falsi colori al fine di evidenziare le varie parti della cometa.

Immagine in falsi colori della cometa C/2009 P1 (Garradd) - 31/08/2011




103P/Hartley – 12/10/2010

Briosco (MB), 12/10/2010 -103P/Hartley

Ripresa della cometa 103/P Hartley 2 effettuata con Canon EOS 40D + filtro UHC. Somma di 15 light frame da 2 minuti di esposizione (totale 30 minuti di posa) a 800 ISO, obiettivo zoom Canon EF 70-300 mm a 70 mm f/4. Montatura EQ 3.2 Skywatcher. Riprese non guidate. Calibrazione effettuata con 21 flat, 15 dark, 20 bias. Elaborazione IRIS + Photoshop CS4.
Scala di Bortle 7 (Magnitudine limite visuale 3.00-3.15). Magnitudine limite raggiunta nella foto 12.70.

103P/Hartley - 12/10/2010




153P/Ikea-Zhang – 31/03/2002

Sormano (CO), 31/03/2002 – 153P/Ikea-Zhang

La data di scatto dell’immagine è stata stimata utilizzando il software Stellarium. La cometa Ikea-Zhang era stata ripresa su diapositiva (non ricordo la sensibilità) con fotocamera Nikon FE2 ed obiettivo Tamron CF 80-210 mm f/4.0 utilizzato a 80mm. Non mi è stato possibile recuperare ulteriori informazioni a riguardo.

 

 

153P/Ikea-Zhang - 31/03/2002




81P/Wild – 05/04/2010

Sormano (CO), 05/04/2010 – 81P/Wild

Riportiamo di seguito una ripresa della cometa 81P/Wild effettuata nel 2010 con camera Canon EOS 40D + obiettivo Canon EF-S 18-55 mm IS utilizzato a 55mm f/5.6. Riportiamo sia l’immagine integrale, somma di alcune immagini a ISO e tempi di esposizione diversi, che un crop della cometa. L’immagine è stata inseguita manualmente con rifrattore acromatico SkyWatcher 70mm f/7 e montatura EQ3.2

 

81P/Wild - 05/04/2010

Crop dell'immagine precedente al fine di evidenziare la posizione della cometa 81/Wild nota anche come Wild2




C/2009 P1 (Garradd) – 02/07/2011

Passo del Mortirolo (BS), 02/07/2011 – C/2009 P1

Telescopio di guida: Newton SkyWatcher 150 mm f/5 + MagZero MZ-5m.

Telescopio di ripresa: Rifrattore ED Tecnosky carbon fiber 80 mm f/7 + riduttore/spianatore 0.8x + Canon EOS 500D non modificata.

Dati di ripresa: singolo scatto da 600 secondi, 400 ISO. Immagine non calibrata

Eleborazione effettuata con Photoshop CS2/CS6

C/2009 P1 (Garradd) - 02/07/2011




M42 (NGC 1976) – 29/12/2012

Telescopio o obiettivo di acquisizione (Imaging telescope or lens): Rifrattore ED (ED reftactor) Tecnosky Carbon Fiber 80mm f/7

Camera di acquisizione (Imaging camera): CCD Atik 314L+ B/W [6.45 μm]

Montatura (Mount): SkyWatcher NEQ6

Telescopio o obiettivo di guida (Guiding telescope or lens): Newton SkyWatcher BlackDiamond 150 mm f/5

Camera di guida (Guiding camera): Magzero MZ-5m B/W [5.2 μm]

Riduttore di focale (Focal reducer): riduttore/spianatore 0.8x (0.8x reducer/field flattener)

Software (Software): IRIS + Adobe Photoshop CS3/CS6

Accessori (Accessories): non presente (not present)

Filtri (Filter):  Astronomik CCD Hα 13nm

Risoluzione (Resolution): 1391 x 1039 (originale, ciascuna/original, each), 3640 x 1039 (finale/final)

Data (Date): 29/12/2012

Luogo (Location): Sormano – CO, Italia (Italy)

Pose (Frames): 5 x 1020 sec bin 1×1 Hα a/at -19.9°C, 4 x 1020 sec bin 1×1 Hα a/at -19.9°C, 4 x 1020 sec bin 1×1 Hα a/at -19.9°C.

Calibrazione (Calibration): 4 x 1020 sec dark Hα a/at -19.9°C, 50 bias Hα a/at -19.9°C, 50 flat Hα a/at -19.9°C.

Fase lunare media (Average Moon phase): 95%

Note (note): mosaico di tre immagini (three frames mosaic)

M42 (NGC 1976) - 29/12/2012

Per scaricare i file originali in formato FIT clicca qui (password richiesta) / Click here in order to download the original files in FIT format (password request)




Il Dark Frame

Nell’articolo “Il Bias Frame” abbiamo visto come un sensore a semiconduttore (CCD e CMOS) risponde al buio, ovvero alla totale assenza di fotoni. Abbiamo così imparato che in questo caso, il livello di luminosità di un pixel è dato dai seguenti contributi:

Livello di luminosità = valore teorico + offset + rumore termico + rumore elettronico casuale + rumore elettronico non casuale

Il Bias Frame è definito come “scatto veloce” con tempo di esposizione paragonabile a zero e pertanto con rumore termico nullo. Cosa succede se ora invece di effettuare uno “scatto veloce” al buio ne effettuiamo uno lento? In questo caso gli elettroni di origine termica, emessi in modo continuo dall’elemento a semiconduttore, andrebbero a sommarsi durante il tempo di esposizione producendo un rumore in un certo senso “proporzionale” al tempo di esposizione. Dal punto di vista teorico questo andrà a costituire una coda ad alti valori di livelli di luminosità. Per sensori di tipo CCD il gioco finisce qui, mentre la faccenda si complica nel caso di CMOS dove la temperatura del sensore non è generalmente controllata (se non nei casi delle DSLR CentralDS). Infatti, con l’aumentare del tempo di esposizione, e posa dopo posa, la temperatura del sensore CMOS varia così come l’emissione di elettroni termici in ciascun elemento fotosensibile. Il risultato complessivo è che ciascuna posa di buio risulta lievemente diversa. A questa variazione della temperatura dell’elemento a semiconduttore bisogna aggiungere anche la possibilità che la temperatura ambiente cambi durante la notte.

Indichiamo quindi con il termine rumore termico l’aumento del livello di luminosità associato all’emissione di elettroni termici, sia questa costante nel caso di sensori a temperatura controllata o variabile nel caso di DSLR tradizionali o raffreddate esternamente.

IL DARK FRAME

Il discorso fatto per in precedenza è riferito ad un solo elemento a semiconduttore: può essere esteso a tutta la matrice di fotoelementi che costituiscono il sensore? In linea generale si, ma dato che l’emissione termica (così come il bias) è diversa per ogni elemento a semiconduttore, il valore di luminosità di buio sarà differente da pixel a pixel. Data un’immagine di buio è quindi necessario sapere quale è il valore dell’offset, l’eventuale rumore elettronico non casuale ed il rumore termico di ciascun pixel, in modo che se sottratto all’immagine “lenta di buio” si otterrà una matrice di pixel con livello di luminosità pari a 0 ADU. Solo in questo modo se durante la ripresa di un oggetto celeste non arriveranno fotoni sull’elemento fotosensibile corrisponderà ad una luminosità pari a 0 ADU.

Prendiamo pertanto la nostra macchina fotografica digitale (DSLR) o la nostra camera CCD astronomica e poniamo il tappo di fronte all’ottica al fine di non far arrivare fotoni sul sensore ricreando pertanto la condizione di buio. Settiamo il tempo di esposizione della nostra DSLR o camera CCD astronomica pari a quello che verrà utilizzato per la ripresa dell’oggetto celeste (vedi il post “Il Light Frame”). Ricordiamo che per le reflex dobbiamo impostare anche gli stessi ISO utilizzati per riprendere la nostra immagine astronomica al fine di porsi nelle stesse condizioni di scatto (la catena elettronica funziona in modo diverso a seconda degli ISO impostati). Per lo stesso motivo anche il binning della nostra camera CCD non dovrà essere modificato. Con questi settaggi si riprendano un certo numero di immagini noti come dark frame.

Per calibrare un’immagine astronomica in modo che un pixel assuma un livello di luminosità pari a 0 ADU è necessario sottrarre all’immagine stessa l’offset, i rumori elettronici non casuali e il rumore termico. Questo può essere effettuato facilmente dato che tutte queste informazioni sono contenute nel dark frame. In particolare definito master dark frame la media dei singoli dark frame, il livello di luminosità di ciascun pixel dell’immagine astronomica calibrata sarà:

Livello di Luminosità = valore assunto dal pixel – master dark frame

Ecco quindi che se effettuiamo una ripresa della galassia di Andromeda e abbiamo un pixel che non viene raggiunto da nessun fotone (ad esempio un pixel del fondo cielo), allora questo assumerà un livello di luminosità pari, per quanto detto prima:

Livello di luminosità = valore teorico + rumore elettronico casuale + master dark

Ecco quindi che se all’immagine della galassia di Andromeda sottraiamo il master dark frame, otteniamo che il pixel privo di fotoni avrà un livello di luminosità pari a:

Livello di luminosità = valore teorico + rumore elettronico casuale

Dove il rumore elettronico casuale diviene prossimo a zero mediando un certo numero N di immagini riprese nelle stesse condizioni di scatto ovvero

Livello di luminosità [mediato su N scatti] = valore teorico

Scattare un dark frame però richiede molto tempo ed ottenere una statistica molto elevata può risultare complicata. Infatti ricordiamo che i dark frame vanno ripresi nelle stesse condizioni di scatto dell’immagine astronomica. Durante la nostra sessione astrofotografica dobbiamo quindi, in caso di fotocamere digitale prive di controllo della temperatura del sensore, prevedere di lasciare del tempo per acquisire un certo numero minimo di dark frame. Purtroppo nel tempo impiegato per riprendere un dark frame otteniamo più di 100 bias frame. Quindi malgrado non contenga informazioni sul rumore termico, il (master) bias frame è in grado di stimare con precisione statistica superiore il valore dell’offset e di eventuali rumori elettronici non casuali presenti nella ripresa rispetto al (master) dark frame. Diviene pertanto conveniente separare i due contributi e quindi creare un master dark che contiene il solo rumore termico medio ed un master bias che contiene informazioni sull’offset e sul rumore elettronico non casuale. Quindi ricordando che nel dark, il valore di luminosità di ciascun pixel è pari a

Livello di luminosità = master bias + rumore termico + rumore elettronico casuale = dark

Allora possiamo identificare la sola componente di rumore termico medio come:

rumore termico + rumore elettronico casuale = dark – master bias

e quindi successivamente mediando su un numero N  di scatti è possibile ridurre a zero il rumore elettronico casuale ottenendo il rumore termico medio.

Riassumendo, per calibrare correttamente le nostre immagini astronomiche sfruttando al meglio le informazioni che possiamo ricavare dal master bias frame, descritto nel post “Il Bias Frame”, e dai dark frame dobbiamo calcolare il rumore termico medio che con abuso di notazione viene anche chiamato master dark frame (creando ovviamente confusione):

rumore termico medio = MEDIA (dark frame – master bias frame) = master dark frame

e questo contiene tutte le informazioni sull’emissione termica di elettroni da parte di ciascun fotoelemento del sensore a semiconduttore. Il master bias frame conterrà invece tutte le informazioni relative all’offset e ai rumori elettronici di natura non casuale. Ecco quindi che in un’immagine di buio, ciascun pixel assumerà il seguente livello di luminosità:

Livello di luminosità [mediato su N scatti] = master bias frame + master dark frame

PIXEL CALDI E PIXEL FREDDI

Sino ad ora abbiamo parlato del rumore intrinseco che ciascun elemento a semiconduttore possiede. Esiste però la possibilità che alcuni pixel funzionino in maniera del tutto anomala rispetto agli altri. In particolare la maggior parte di questi posseggono un comportamento quantizzato, ovvero o rimangono sempre ad un livello di saturazione o rimangono completamente spenti. Nel primo caso si parla di pixel caldi mentre nel secondo caso di pixel freddi. Pixel caldi e freddi vanno “sottratti” da ciascuna immagine astronomica dato che introducono un segnale “fittizio”. In questo caso più che sottrazione si dovrebbe parlare di sostituzione. Infatti il livello di luminosità dei pixel caldi e freddi viene sostituito con il valore 0 ADU che è quello che dovrebbe assumere, dopo la calibrazione, un pixel che non riceve radiazione luminosa. Dato che i pixel freddi hanno livello di luminosità pari a 0 ADU, è praticamente inutile una loro identificazione, visto che la sostituzione non avrebbe nessun effetto. Ecco pertanto che la maggior parte dei software astronomici specializzati nell’elaborazione delle immagini prevedono una funzione di ricerca e quindi sostituzione, dei soli pixel caldi.

Esistono ora dei pixel che funzionano in modo anomalo ma non sono pixel caldi e freddi? Purtroppo si. Generalmente non sono molti e vengono identificati (e quindi eliminati) dai software astronomici come pixel caldi. Questi pixel noti come “pixel riscaldati” (warm pixel) sono pixel che generano un rumore termico con un tasso superiore rispetto a quelli tradizionali portandoli, in tempi di esposizione sufficientemente lunghi o a seguito di un aumento della temperatura del sensore, a saturazione.

Uno studio dei pixel riscaldati è progetto di ricerca per ASTROtrezzi.it. Chi fosse interessato è pregato di inviare un e-mail all’indirizzo ricerca@astrotrezzi.it   

Riportiamo di seguito lo studio del dark frame per una ATIK 314L+ B/W (sensore CCD) e per una Canon EOS 40D (sensore CMOS).

ATIK 314L+ B/W

Cominciamo con il dire che la CCD ATIK 314L+ B/W è una camera astronomica raffreddata da cella di Peltier a temperatura controllata. Questo significa che durante gli scatti la temperatura del sensore viene mantenuta costante da un sistema di controllo elettronico. Questo fatto è dimostrato riprendendo un certo numero di dark frame e confrontati. Il confronto è illustrato in Figura 1 e mostra come la distribuzione dei livelli di luminosità non vari da una posa ad un’altra.

Figura 1: Confronto tra quattro dark frame ripresi in successione uno dopo l’altro. Come si vede le distribuzioni sono identiche indice di una temperatura costante del sensore durante la ripresa

Data l’ampia dinamica e la ridotta corrente di lettura, una CCD è maggiormente sensibile alla corrente di buio o meglio al rumore termico. In particolare dato che la quantità di ADU indotti dal rumore termico aumenta all’aumentare del tempi di esposizione, quello che succede è una traslazione netta dell’offset all’aumentare del tempo di esposizione. Ecco quindi che in maniera più marcata rispetto ai sensori CMOS abbiamo uno spostamento dell’offset a causa dell’aumento del rumore termico integrato. Questo è visibile in Figura 2 dove si vede la differenza tra il bias frame ed un dark frame da 1000 secondi (quindi un periodo di integrazione, tempo di esposizione, un milione di volte più lungo).

Figura 2: Confronto tra bias e dark frame. Lo spostamento dell’offset è dovuto sostanzialmente al tempo di integrazione del rumore termico.

La sensibilità dei CCD al rumore termico o se vogliamo l’aumento della dinamica di questi tipi di sensori rispetto ai CMOS si riflette in una “non ottimale” sottrazione del master bias frame dai dark. In particolare dato che l’offset del bias è diverso da quello del dark, La sottrazione produce una curva che non risulta centrata a zero ADU come dovrebbe ma ha un massimo leggermente spostato (vedi Figura 8). In ogni caso, un eventuale stretching dell’istogramma permetterebbe di sistemare il tutto ottenendo quanto atteso teoricamente. Un esempio di rumore termico (master dark frame) effettuata su una singola posa è visibile in Figura 3.

Figura 3: esempio di master dark frame acquisito con una CCD astronomica modello ATIK 314L+ B/W. Si noti la distribuzione uniforme del segnale termico.

CANON EOS 40D

In questo post ci concentreremo principalmente sui sensori CMOS, dato che escludendo i modelli CentralDS, in tutti gli altri casi risultano privi di sistemi di controllo della temperatura (tra cui la Canon EOS 40D in esame). Questo rende complessa la descrizione del dark frame nel caso di reflex digitali. In primo luogo un rivelatore a semiconduttore, se non raffreddato, varia la sua temperatura durante la fase di funzionamento. Dato che gli scatti, siano essi immagini astronomiche o dark frame, avvengono in successione, quello che succede è che la temperatura dell’elemento fotosensibile va via via aumentando così come il rumore termico da essa indotto. L’effetto globale è quello della formazioni di code ad alti (e bassi) valori di ADU come visibile in Figura 4. Malgrado questo, gran parte dei pixel si comportano correttamente mantenendo costante la quantità di rumore termico ed aumentandone soltanto le fluttuazioni statistiche. Questo è visibile in Figura 5.

Figura 4: variazione della distribuzione dei livelli di luminosità del dark frame in funzione del numero di scatti successivi ossia della temperatura del sensore

Figura 5: malgrado l’aumento della larghezza dell’offset, la maggior parte dei singoli pixel si comportano correttamente mantenendo costante il suo valore.

Se però ora calcoliamo la quantità di ADU complessivi dell’immagine e la dividiamo per il numero di pixel del sensore, otteniamo quello che potremmo chiamare livello di luminosità media per pixel. In altre parole quello che andiamo a misurare è la quantità di ADU che mediamente possiede ciascun pixel, ovvero un’approssimazione dell’offset. Se il rumore indotto dai singoli fotoelementi fosse costante, allora il livello di luminosità medio per pixel non dovrebbe variare da scatto a scatto. L’aumento di temperatura invece provoca un aumento del rumore termico che si traduce quindi in un aumento del livello di luminosità medio per pixel. L’andamento per una successione di 8 dark frame da 7 minuti a 800 ISO, ripresi in successione uno dopo l’altro, è illustrato in figura 6. Come si vede, dopo un gradiente iniziale dovuto al riscaldamento “veloce” del sensore, successivamente l’aumento del livello di luminosità media in funzione della temperatura è lineare (con coefficiente di correlazione pari a 0.97) pari a 2.6821 ADU/°C.

Figura 6: aumento del livello di luminosità media per pixel in funzione della temperatura del sensore per dark frame da 7 minuti a 800 ISO acquisiti in rapida successione.

La figura 6 dovrebbe farci riflettere sul fatto che quando riprendiamo delle immagini astronomiche con una reflex digitale, il rumore termico ad essa associato non è costante e varia da posa a posa. Cosa possiamo fare? Purtroppo poco. L’unica possibilità è lasciare un periodo di tempo tra una posa e la seguente in modo da permettere al sensore di raffreddarsi. Ricordiamo comunque che il livello di luminosità media per pixel è variata in 8 dark da 7 minuti di “soli” 43 ADU su un valore medio inziale pari a 1044 ADU. L’errore che quindi commettiamo nel non considerare il riscaldamento del sensore a seguito del suo funzionamento è esiguo e mediamente inferiore al 5%. Gran parte del “rumore termico” è poi contenuto in quelli che abbiamo chiamati pixel caldi e riscaldati. Una sottrazione e correzione di questi pixel porterebbe ad un significativo miglioramento della qualità del master dark frame.

Un altro effetto è la dipendenza del rumore termico dal tempo di esposizione. Infatti all’aumentare del tempo di posta aumenta la quantità di rumore termico integrato. Il processo è lineare per tempi di esposizione sufficientemente lunghi come mostrato in figura 7. In particolare in grande è riportata la variazione del livello di luminosità medio per pixel in funzione del tempo di esposizione, mentre nel riquadro piccolo il livello di luminosità medio per pixel sempre in funzione del tempo di esposizione.

A 800 ISO, abbiamo dopo 150 secondi di posa, un incremento di rumore termico lineare (coefficiente di correlazione lineare 0.99) pari a 0.1421 ADU/secondo.

Figura 7: variazione del livello di luminosità media per pixel in funzione del tempo di esposizione. Nel riquadro a lato livello di luminosità media per pixel in funzione del tempo di esposizione. Tutti i dark frame sono stati ripresi a 800 ISO.

La quantità di rumore termico che introduciamo aumenta quindi linearmente con il tempo di esposizione andando a deteriorare l’informazione contenuta nell’elemento fotosensibile. Ma quanto contribuisce questo rumore rispetto all’offset? Abbiamo visto in precedenza come un aumento della temperatura del sensore introduce una variazione del livello di luminosità media per pixel inferiore al 5%. In questo caso per tempi di esposizione pari a 7 minuti a 800 ISO abbiamo che la variazione di ADU rispetto al bias frame è pari a 42 ADU e quindi inferiore persino a quello che si ottiene a seguito del riscaldamento del sensore.

In ogni caso questo valore rimane costante da posa a posa se la temperatura del sensore rimanesse costante (cosa che invece abbiamo visto non accadere). 42 ADU è quindi il vero contributo di rumore medio contenuto in ciascun pixel alimentato per 7 minuti a 800 ISO in condizioni di buio ad una determinata temperatura T. Quindi se i 43 ADU dovuti alla variazione di temperatura del sensore erano una sorgente di errore nel processo di “costruzione” del master dark frame, questi 42 ADU costituiscono il rumore termico medio costante intrinseco della fotocamera e quindi facilmente correggibile attraverso il processo di sottrazione del master dark frame (rumore termico medio).

La variazione dell’offset del dark frame rispetto all’offset bias frame nel caso di CMOS varia quindi dal 5% nel caso di fotocamera “fredda” al 10% nel caso di fotocamera riscaldata. Tale discrepanza è comunque trascurabile e fa si che i due offset siano praticamente coincidenti traducendosi in un valore di livello di luminosità del master dark frame o del rumore termico medio pari a 0 ADU come correttamente atteso. Quindi nei sensori CMOS non siamo di fronte a quel offset fittizio descritto in precedenza nei sensori CCD e visibile in Figura 8.

Figura 8: distribuzione dei livelli di luminosità del master dark frame (rumore termico medio) nel caso di sensori CCD e CMOS. Si vede come nel caso dei sensori CMOS il segnale sia soltanto di natura termica (coda esponenziale) mentre nei sensori CCD si osserva la presenza di un finto offset a seguito della maggiore dinamica e quindi sensibilità allo spostamento dell’offset a seguito dell’integrazione del rumore termico.

Ricordiamo ancora una volta come la maggior parte del rumore termico venga immagazzinato nei pixel riscaldati che quindi giocano un ruolo importante nei sensori a semiconduttori. Riportiamo infine un’immagine del master dark frame nel caso di un sensore CMOS Canon EOS 40D.

Figura 9: esempio di master dark frame acquisito con una DSLR modello Canon EOS 40D (sensore CMOS). E’ possibile osservare i gradienti termici dovuti alle regioni del sensore più vicine a “punti caldi” dell’elettronica.

CONDIZIONI DI DARK FRAME

Ovviamente, dato che i dark frame contengono l’informazione termica del sensore a semiconduttore è strettamente necessario che questi vengano ripresi nelle medesime condizioni ambientali delle immagini astronomiche. Tale vincolo si traduce nel prevedere un tempo di ripresa dei dark a seguito di una notte astrofotografica oppure nel memorizzare la temperatura di utilizzo della camera CCD astronomica o DSLR nel caso di sensori dotati di sistemi di raffreddamento con controllo della temperatura. Nel caso delle reflex digitali persino l’umidità o la luce ambiente potrebbe influire la ripresa del dark frame e quindi è vivamente sconsigliato la ripresa di questi scatti durante l’alba o il tramonto o in notte successive a quella di ripresa.

Ricordiamo inoltre che alcuni pixel possono diventare caldi o freddi a seguito di una rottura per invecchiamento. Pertanto, nel caso di CCD o DSLR raffreddati è necessario ogni tanto aggiornare le proprie librerie di dark.

 MEDIA O MEDIANA

Sino ad ora abbiamo parlato di rumori, ovvero fenomeni fisici sempre presenti in ogni singolo dark frame. Esistono però altri fenomeni che possono verificarsi solo in alcuni dark frame e non in tutti. Questi fenomeni sporadici rischiano però di introdurre un segnale nella media spurio che al netto andrà a peggiorare la qualità dell’immagine astronomica finale. Un segnale sporadico è ad esempio quello generato dai raggi cosmici (per maggiori informazioni si legga l’articolo “I raggi cosmici e l’astrofotografia digitale”) i quali possono rilasciare parte della loro energia in uno o più pixel liberando un gran numero di elettroni.

Un modo per non considerare in una media i pixel che subiscono solo sporadicamente una grossa variazione del loro Livello di Luminosità è utilizzare invece della classica media aritmetica delle immagini, la mediana. Per maggiore informazioni sui vari algoritmi di media di immagini o più precisamente stacking delle immagini si legga l’articolo “Metodi di Stacking”.

IRIS E IL DARK FRAME

IRIS permette di creare il master dark (inteso come rumore termico medio), partendo dai singoli dark frame e dal master bias frame. Il metodo consigliato per combinare le singole immagini è il metodo della mediana. Per quanto riguarda la procedura operativa da seguire si rimanda alla Guida per l’elaborazione delle immagini astronomiche con IRIS. Chi fosse interessato allo studio metodico del dark frame o semplicemente vuole integrare questo articolo con ulteriori considerazioni e schede tecniche, è pregato di inviare una e-mail a ricerca@astrotrezzi.it .

 




COMETA C/2012 S1 (ISON)

La cometa C/2012 S1 (ISON) è stata scoperta il giorno 21 settembre 2012 nell’ambito del progetto scientifico denominato International Scientific Optical Network (ISON) costituito da un gruppo di telescopi localizzati in dieci differenti nazioni al fine di monitorare il moto di detriti spaziali (oggetti GEO) nonché dal 2004 asteroidi e comete. In particolare la cometa è stata scoperta dagli astronomi russi Vitali Nevski e Artyom Novichonok con l’ausilio di un telescopio del riflettore da 40 cm di diametro dell’Osservatorio Astronomico di Kislovodsk (Russia).

La C/2012 S1 è una cometa non periodica che al momento della scoperta brillava di magnitudine 19-20. Questa raggiungerà il punto di massima vicinanza al Sole (0.012 UA) il giorno 28 Novembre 2013, mentre il punto di minima distanza con la Terra si avrà poco dopo, il giorno 26 Dicembre 2013 (0.42 UA) tanto da assegnare a questa come il nome di “cometa di Natale”. Il Minor Planet Center (MPC) ovvero l’organizzazione dell’Unione Astronomica Internazionale atta alla determinazione delle orbite di comete ed asteroidi, fornisce una stima della luminosità della cometa che riportiamo nel grafico qui sotto. Come visibile, le stime attuali forniscono un valore di luminosità massima della cometa superiore a quella di Venere, rendendola pertanto visibile anche durante il giorno. Secondo le ultime stime la magnitudine relativa raggiungerà il massimo il giorno 29 Novembre 2013, pari a -5.1.

NEWS: La cometa C/2012 S1 ISON comincia a mostrare una tenue coda già attraverso telescopi di corta focale (vedi immagine del 03/03/2013).

NEWS: La cometa C/2012 S1 ISON sembra perdere luminosità rispetto a quanto previsto inizialmente. Lo riporta la rivista Sky&Telescope alla pagina http://www.skyandtelescope.com/observing/highlights/Comet-ISON-Updates-193909261.html . Sarà vero? Al momento è difficile dirlo. Gli scienziati sono ancora molto divisi e come per la cometa PANSTARRS il pessimismo iniziale potrebbe infine rivelarsi errato. Infatti è molto difficile stimare la luminosità e le dimensioni della coda di una cometa, specialmente per quelle come la ISON che giungono per la prima volta nelle vicinanze del Sole. Sicuramente la C/2012 S1 sarà una delle comete più luminose del cielo degli ultimi anni ma la possibilità di osservarla in pieno giorno con il Sole non è ancora una certezza. Neppure la sua stessa sopravvivenza è sicura. Infatti il nucleo cometario potrebbe frammentarsi durante le fasi di avvicinamento stretto al Sole. Ovviamente ora è presto per fare qualsiasi stima. Incrociamo le dita quindi e cominciamo ad osservarla mentre piano piano si avvicina al Sole.

NEWS: Se dovessimo riassumere oggi 27/08/2013 la situazione della cometa C/2012 S1 (ISON) potremmo dire che, come per la PAN-STARRS, le prime stime fornite dal Minor Planet Center risultano più che ottimistiche. Secondo le ultime misure infatti più che di cometa del secolo dovremmo parlare di cometa molto luminosa. Infatti la sua luminosità, così come misurata appena la cometa è tornata visibile tra le luci dell’alba dopo il passaggio prospettico nelle vicinanze del Sole, è ben inferiore alle aspettative (due magnitudini in meno) e la possibilità di osservare la ISON in pieno giorno sembra diventare sempre più bassa. Ad oggi la comunità scientifica amatoriale sembra divisa in due tra i pessimisti che ipotizzano un nucleo piccolo della cometa e quindi morte certa durante l’incontro ravvicinato con il sole e gli ottimisti che utilizzano come esempio la PAN-STARRS per dimostrare come un aumento di luminosità sia più che possibile, specialmente per comete non periodiche come appunto la ISON. Non ci resta quindi che attendere e osservare quel debole puntino luminoso che oggi brilla di mag. +13.5. Appena possibile cercheremo di riprendere una nuova immagine della cometa.

La cometa ISON ed il pianeta Marte (in basso a destra) ripresa all'alba del 17/10/2013 da Inverigo

NEWS: Malgrado la cometa a metà settembre abbia superato la frost line la sua luminosità rimane purtroppo leggermente sotto le previsioni. Nelle migliori delle ipotesi ISON dovrebbe sfiorare magnitudo -7 nei giorni del passaggio al perielio (28 Novembre 2013). Il 15/10/2013 era prevista una congiunzione Marte-Regolo-ISON, tutte entro 2° ma purtroppo le condizioni meteo non ne hanno permessa l’osservazione. Siamo comunque riuscire a riprendere C/2012 S1 il giorno 17/10/2013 da Inverigo, dove si presentava di magnitudine (teorica) intorno a +10.0 anche se a conti fatti sembrava più debole. Maggiori informazioni saranno presentate nella sezione “Misure spettroscopiche e fotometriche della cometa C/2012 S1 (ISON) effettuate da ASTOtrezzi”. In Ottobre sono state inoltre effettuate le prime misure spettroscopiche amatoriali della cometa che mostrano linee di emissioni del carbonio diatomico (C2) e del radicale cianogeno (CN). Malgrado tutto ISON sta al momento (22/10) incrementando la sua chioma che appare di colore verde e la sua coda che al momento è pari a circa dieci primi d’arco. Dallo spazio ci arrivano notizie confortanti. L’Hubble Space Telescope ha confermato lo stato di buona salute della cometa che dovrebbe quindi resistere al passaggio al perielio senza frantumarsi. Le dimensioni del nucleo sono state stimate intorno ai 4 chilometri di diametro e forse anche meno. Questo sembra ruotare su se stesso con bassa velocità angolare. ISON inoltre è visibile dal 10/10/2013 attraverso la camera HI2 della sonda STEREO-A (http://www.isoncampaign.org/karl/cioc-exclusive-ison-in-stereo). Malgrado le difficoltà a seguito del Federal Government Shutdown americano, sono state pubblicate le immagini riprese dalla sonda Mars Reconnaisance Orbiter (https://hirise.lpl.arizona.edu/releases/ison.php). Poco si sa invece delle riprese effettuate dal rover Curiosity. Malgrado le previsioni altalenanti di Seiichi Yoshida, la cometa ISON sembra pronta per dare spettacolo: non ci resta che attendere!

NEWS: la cometa ISON prosegue il suo moto di avvicinamento al Sole mostrando una luminosità purtroppo sempre inferiore alle aspettative. Secondo l’astronomo Jian-Yang del Planetary Science Institute di Tucson la cometa C/2012 S1 starebbe rivolgendo il suo polo di rotazione verso la nostra stella. Questo significherebbe che parte della cometa non ha ancora mostrato la sua superficie al Sole rimanendo intatta con tutti i gas e polveri utili per dare spettacolo una volta passato il perielio. Il giorno 07/11 si è osservata l’apparizione di una probabile coda di ioni che si affianca alla stretta coda di polveri, tipica delle comete sungrazing.

NEWS: ieri (14/11/2013) la cometa ISON ha mostrato un outburst ovvero un aumento improvviso di luminosità che l’ha portata da mag. +8 a +6. Anche la coda di dimensioni ormai superiori ai 45 secondi d’arco, comincia a mostrare una struttura piuttosto complessa (vedi http://cieloprofundo.net/2013/11/14/estallido-del-cometa-c2012-s1-ison/ ). Mark Kidger dell’ ESA’s European Space Astronomy Centre di Madrid ha posto la questione che sia la forma della coda che quest’ultimo outburst potrebbe essere sinonimo di una futura frammentazione del nucleo cometario come accadde per la cometa C/1999 S4 (LINEAR).

NEWS: nei giorni seguenti il 14/11/2013 si è sparsa la notizia di una possibile frammentazione del nucleo della cometa ISON supportata da una misura effettuata da H. Boehnhardt et al. presso Mt. Wendelstein Observatory (16/11/2013 – CBET3715) che mostrerebbe la frammentazione in due parti del nucleo cometario. Il 17/11/2013 però il CIOC (NASA Comet ISON Observing Campaign) in http://www.isoncampaign.org/karl/did-ison-fragment riporta come tali “frammenti” sono troppo simmetrici e potrebbero essere dovuti a getti emessi dal nucleo a seguito dell’outburts del 14/11.

NEWS: il giorno 19/11/2013 la cometa C/2012 S1 ha mostrato un secondo outburst che ne ha aumentato ancora la luminosità oltre il valore predetto dal MPC. Malgrado questo secondo fenomeno esplosivo lo stato della cometa sembra oggi (21/11) mantenersi buono. ISON presenta una chioma superiore ai 100000 km di diametro ed una coda di almeno 8 milioni di chilometri. La coda presenta disconnessioni e dimensioni angolari notevoli (superiori ai 7 gradi).Misure spettroscopiche amatoriali confermano la colorazione verde della cometa dovuta alla presenza delle linee di emissione del carbonio diatomico (C2) oltre a OI e probabile Na. Ormai bassa sull’orizzonte est sarà visibile nei giorni del perielio solo attraverso le camere degli osservatori solari orbitanti. Purtroppo le condizioni meteo sul nord Italia hanno impedito l’osservazione della cometa nelle ultime due settimane.

L'alba del 25/11/2013 da Inverigo (CO). Malgrado le ottime condizioni meteo non è stato possibile riprendere la cometa ISON ormai bassissima ad est tra le luci dell'alba. Nell'immagine sono visibili Saturno e Mercurio.

NEWS: al un giorno dal perielio (27/11) la cometa ISON è diventata visibile nella camera LASCO C3 della sonda spaziale SOHO (seguite la diretta cliccando sull’apposita icona a lato di questa pagina!). A partire dal giorno 21/11/2013 ricercatori del telescopio IRAM hanno osservato una rapida diminuzione delle emissioni. Una possibile spiegazione potrebbe essere il raggiungimento da parte del nucleo cometario della massima attività oppure la possibile frammentazione completa della cometa. In ogni caso sembra che questo comportamento porterà ad una diminuzione della massima luminosità raggiunta domani dalla cometa. Come riferito da molti scienziati però ISON è una cometa unica nel suo genere: sungrazing e proveniente dalla nube di Oort. Quindi poco sappiamo di lei e del suo comportamento dopo il perielio. Le ultimi immagini di SOHO mostrano infatti una cometa in ottima saluta e ben lontana dalla frammentazione. Continuate a visitare ASTROtrezzi, domani sapremo e pubblicheremo quale sarà il futuro di ISON!

Riportiamo infine l’osservazione effettuata da ASTROtrezzi il 25/11 da Inverigo (CO) al fine di individuare ISON alla minima distanza dal Sole osservabile da Terra con telescopi amatoriali. Malgrado l’elevata trasparenza del cielo a seguito di forti venti non è stato possibile osservare la cometa bassissima sull’orizzonte EST.

NEWS: oggi (28/11) alle ore 19.38 la cometa C/2012 S1 (ISON) è passata al perielio, sfiorando letteralmente il Sole. Fino alle 18.39 quindi ad un’ora dal passaggio ravvicinato con la nostra stella, ISON ha mostrato due code ed un nucleo compatto e piuttosto luminoso. A partire dalle 19.24 il nucleo è apparso nella camera STEREO-A COR2 diffuso ed in netto calo di luminosità sintomo di una probabile vaporizzazione dello stesso. La vaporizzazione è apparsa definitiva alle ore 20.39 quando moltissimi siti di astronomia amatoriale e professionale davano ISON completamente distrutta con le polveri rimaste in dissolvimento a seguito dell’intenso vento solare. Alle ore 20.54 però alcuni frammenti sembrano aver proseguito lungo l’orbita della cometa, fenomeno confermato con il passare delle ore da tutti gli osservatori solari spaziali (SOHO e STEREO). Alle ore 23.39 non siamo ancora in grado di comprendere l’entità e la natura di quel che rimane di ISON dopo il passaggio al perielio. Potrebbe trattarsi del resto della coda destinata a dissolversi a seguito del vento solare oppure frammenti della cometa. Una non del tutto remota possibilità è che il nucleo di ISON sia sopravvissuto e che l’intensa radiazione solare abbia spezzato la coda della cometa.

NEWS: ad ormai un giorno dal perielio ancora poco possiamo dire di quello che è “il resto di ISON”. Purtroppo non ci sono certezze ma soli indizi. La natura unica di ISON rende questo oggetto particolarmente imprevedibile e la rinascita dopo il perielio ne è stato un classico esempio. Cosa stiamo osservando in questo momento? Sicuramente non la “cometa del secolo” intatta al passaggio al perielio. Molto probabilmente stiamo osservando una cometa disintegrata o in frammentazione. Questo vuol dire che la sua luminosità è destinata a diminuire nei prossimi giorni lasciando agli osservatori una debole cometa senza nucleo.  Una sorte analoga toccò alla cometa C/2010 X1 (Elenin) frammentatasi in condizioni però molto differenti di quelle di ISON. Una seconda possibilità è quella che il nucleo di ISON si sia distrutto ed uno (o più?) pezzi siano sopravvissuti. Questi potrebbero ricreare nelle prossime ore una chioma ed una coda dando luogo ad un oggetto sicuramente meno luminoso delle previsioni iniziali ma pur sempre interessante come è stata la cometa C/1962 C1 Seki-Lines, magicamente “scomparsa” al perielio e poi rinata nei giorni seguenti. Prima del perielio sono infatti stati pubblicati molti articoli che mostrano numerose analogie tra la cometa Seki-Lines e ISON. Cosa fare quindi? Non ci resta che attendere ancora qualche giorno per scoprire il destino di questa ancor più piccola cometa.

NEWS: oggi 30/12/2013 i resti della cometa ISON hanno mostrato la loro vera natura. La luminosità è scesa infatti drammaticamente durante la notte (italiana) passando rapidamente da magnitudo +3 a +5. Anche quello che poteva essere un nucleo (o più) compatto circondato da gas e polveri si è rivelato un insieme di frammenti in rapida dissoluzione. Non ci resta quindi che attendere che i resti di ISON si separano a sufficienza per effettuare delle riprese con telescopi amatoriali. Ovviamente ISON non sarà ne la cometa del secolo ne una cometa in senso stretto. Speriamo che la luminosità non crolli troppo e che il vento solare e la pressione di radiazione non soffino via i resti della nostra amata cometa.

L'andamento della lumionsità della cometa C/2012 S1 in funzione del tempo. In nero è stato colorato il periodo in cui la cometa sarà visibile dai cieli boreali. In arancione, azzurro, rosso, verde e viola le luminosità medie dei pianeti Venere, Giove, Saturno, Urano e del pianeta nano Plutone. (Stime MPC aggiornate al 01/02/2013)

Riportiamo anche uno zoom del grafico relativo al periodo di visibilità della cometa ad occhio nudo:

Un ingrandimento del grafico precedente relativo al periodo di massima luminosità della cometa.

 




NGC 2174 – 30/01/2013

Telescopio o obiettivo di acquisizione (Imaging telescope or lens): Rifrattore ED (ED reftactor) Tecnosky Carbon Fiber 80mm f/7

Camera di acquisizione (Imaging camera): CCD Atik 314L+ B/W [6.45 μm]

Montatura (Mount): SkyWatcher NEQ6

Telescopio o obiettivo di guida (Guiding telescope or lens): Newton SkyWatcher BlackDiamond 150 mm f/5

Camera di guida (Guiding camera): Magzero MZ-5m B/W [5.2 μm]

Riduttore di focale (Focal reducer): riduttore/spianatore 0.8x (0.8x reducer/field flattener)

Software (Software): IRIS + Adobe Photoshop CS3/CS6

Accessori (Accessories): non presente (not present)

Filtri (Filter):  Astronomik RGB 2”

Risoluzione (Resolution):  1391 x 1039 (originale/original)

Data (Date): 30/01/2013

Luogo (Location): Sormano – CO, Italia (Italy)

Pose (Frames): 7 x 600 sec bin 1×1 R , 6 x 600 sec bin 1×1 G, 4 x 600 sec bin 1×1 B a/at -9.9°C.

Calibrazione (Calibration): 20 x 600 sec dark RGB, 100 bias, 100 flat R, 100 flat G, 100 flat B

Fase lunare media (Average Moon phase): 85.6%

Focale equivalente (Equivalent focal lenght): 448 mm

Note (note): non presente (not present)

NGC 2174 - 30/01/2013

Proponiamo anche una seconda versione dove il filtro riduci stella è stato utilizzato con minor intensità (We report also a picture with a low intensity reduce stars filter). Clicca qui per la visione ad alta risoluzione.

NGC 2174 - 30/01/2013

Per scaricare i file originali in formato FIT clicca qui (password richiesta) / Click here in order to download the original files in FIT format (password request)




Cratere Hedin – 25/01/2013

Telescopio o obiettivo di acquisizione (Imaging telescope or lens): Newton SkyWatcher Black Diamond 150 mm f/5

Camera di acquisizione (Imaging camera): Celestron Neximage [5.6 μm]

Montatura (Mount): SkyWatcher NEQ6

Telescopio o obiettivo di guida (Guiding telescope or lens): non presente (not present)

Camera di guida (Guiding camera): non presente (not present)

Riduttore di focale (Focal reducer): non presente (not present)

Software (Software): Registax5.1 + Adobe Photoshop CS6

Accessori (Accessories): Lente di Barlow TS APO 2.5x (TS 2.5x APO Barlow lens), Lente di Barlow TeleVue Powermate 5x (TeleVue Powermate 5x Barlow lens)

Filtri (Filter): IR-Cut

Risoluzione (Resolution): 640 x 480 ciascun frame (each frame), 802 x 1366 mosaico 2.5x (mosaic 2.5x), 821 x 1135 mosaico 5x (mosaic 5x).

Data (Date): 25/01/2013

Luogo (Location): Briosco – MB, Italia (Italy)

Pose (Frames): mosaico di 9 immagini, ciascuno somma di 600 frames 2.5x (mosaic of 9 pictures, sum of about 600 frames each); mosaico di 13 immagini, ciascuno somma di 600 frames 5x (mosaic of 13 pictures, sum of about 600 frames each).

Calibrazione (Calibration): non presente (not present)

Fase lunare media (Average Moon phase): 98.0%

Immagine ripresa con Barlow 2.5x (2.5x Barlow image)

Cratere Hedin (Barlow 2.5x) - 25/01/2013

Immagine ripresa con Barlow 5x (5x Barlow image)

Cratere Hedin (Barlow 5x) - 25/01/2013

Immagine didattica (educational picture)




Luna – 25/01/2013

Telescopio o obiettivo di acquisizione (Imaging telescope or lens): Newton SkyWatcher Black Diamond 150 mm f/5

Camera di acquisizione (Imaging camera): Celestron Neximage [5.6 μm]

Montatura (Mount): SkyWatcher NEQ6

Telescopio o obiettivo di guida (Guiding telescope or lens): non presente (not present)

Camera di guida (Guiding camera): non presente (not present)

Riduttore di focale (Focal reducer): non presente (not present)

Software (Software): Registax5.1 + Adobe Photoshop CS6

Accessori (Accessories): Lente di Barlow TeleVue Powermate 5x (TeleVue Powermate 5x Barlow lens)

Filtri (Filter): Astronomik IR-Cut

Risoluzione (Resolution): 640 x 480 ciascun frame (each frame), 1424 x 1478 mosaico (mosaic)

Data (Date): 25/01/2013

Luogo (Location): Briosco – MB, Italia (Italy)

Pose (Frames): mosaico di 13 immagini, ciascuno somma di circa 300 frames (mosaic of 13 pictures, sum of about 300 frames each)

Calibrazione (Calibration): non presente (not present)

Fase lunare media (Average Moon phase): 98.0%

Campionamento (Pixel scale): 1807 arcsec /1169 pixel = 1.54576 arcsec/pixel

Focale equivalente (Equivalent focal lenght): 1785 mm

Luna - 25/01/2013




Giove – 25/01/2013

Telescopio o obiettivo di acquisizione (Imaging telescope or lens): Newton SkyWatcher Black Diamond 150 mm f/5

Camera di acquisizione (Imaging camera): Celestron Neximage [5.6 μm]

Montatura (Mount): SkyWatcher NEQ6

Telescopio o obiettivo di guida (Guiding telescope or lens): non presente (not present)

Camera di guida (Guiding camera): non presente (not present)

Riduttore di focale (Focal reducer): non presente (not present)

Software (Software): Registax5.1 + Adobe Photoshop CS6

Accessori (Accessories): Lente di Barlow TeleVue Powermate 5x (TeleVue Powermate 5x Barlow lens)

Filtri (Filter): non presente (not present)

Risoluzione (Resolution): 640 x 480

Data (Date): 25/01/2013

Luogo (Location): Briosco – MB, Italia (Italy)

Pose (Frames): somma di 400 frames

Calibrazione (Calibration): non presente (not present)

Fase lunare media (Average Moon phase): 98.0%

Campionamento (Pixel scale): 43.8 arcsec /150.9 pixel = 0.29026 arcsec/pixel

Focale equivalente (Equivalent focal lenght): 3980 mm

(clicca qui per scaricare l’immagine originale in formato TIFF – click here in order to download the TIFF file)

Giove - 25/01/2013. Si noti la Grande macchia rossa a sinistra del disco. I satelliti in figura sono rispettivamente Io (sopra) ed Europa (sotto). Quest'ultimo proietta la sua ombra sul disco di Giove

 




Cratere Copernico – 22/01/2013

Telescopio o obiettivo di acquisizione (Imaging telescope or lens): Newton SkyWatcher Black Diamond 200 mm f/4

Camera di acquisizione (Imaging camera): Magzero MZ-5m B/W [5.2 μm]

Montatura (Mount): SkyWatcher NEQ6

Telescopio o obiettivo di guida (Guiding telescope or lens): non presente (not present)

Camera di guida (Guiding camera): non presente (not present)

Riduttore di focale (Focal reducer): non presente (not present)

Software (Software): Registax5.1 + Adobe Photoshop CS6

Accessori (Accessories): Lente di Barlow TS APO 2.5x (TS 2.5x APO Barlow lens)

Filtri (Filter): non presente (not present)

Risoluzione (Resolution): 1280 x 1024 (originale/original), 1248 x 968 (finale/final)

Data (Date): 22/01/2013

Luogo (Location): Briosco – MB, Italia (Italy)

Pose (Frames): somma di 100 frames

Calibrazione (Calibration): non presente (not present)

Fase lunare media (Average Moon phase): 83.0%

(clicca qui per scaricare l’immagine originale in formato TIFF – click here in order to download the TIFF file)

Cratere Copernico - 22/01/2013

 




M45 (NGC 1432) – 11/01/2013

Telescopio o obiettivo di acquisizione (Imaging telescope or lens): Rifrattore ED (ED reftactor) Tecnosky Carbon Fiber 80mm f/7

Camera di acquisizione (Imaging camera): Canon EOS 500D (Rebel T1i) con filtro Baader (with Baader Filter) [4.7 μm]

Montatura (Mount): SkyWatcher NEQ6

Telescopio o obiettivo di guida (Guiding telescope or lens): Newton SkyWatcher BlackDiamond 150 mm f/5

Camera di guida (Guiding camera): Magzero MZ-5m B/W [5.2 μm]

Riduttore di focale (Focal reducer): riduttore/spianatore 0.8x (0.8x reducer/field flattener)

Software (Software): IRIS + Adobe Photoshop CS3/CS6

Accessori (Accessories): non presente (not present)

Filtri (Filter):  Astronomik UHC-E

Risoluzione (Resolution): 4752 x 3168 (originale/original), 4770 x 3178 (finale/final)

Data (Date): 11/01/2013

Luogo (Location): Sormano – CO, Italia (Italy)

Pose (Frames): 13 x 360 sec at/a 3200 ISO.

Calibrazione (Calibration): 18 x 360 sec dark, 105 bias, 105 flat

Fase lunare media (Average Moon phase): 0%

Campionamento (Pixel scale): 3553.5 sec / 1633.21 pixel = 2.1758 arcsec/pixel

Focale equivalente (Equivalent focal lenght): 448 mm

Note (note): non presente (not present)

M45 (NGC1342) - 11/01/2013

Per scaricare i file originali in formato PIC clicca qui (password richiesta) / Click here in order to download the original files in PIC format (password request)




COMETA C/2011 L4 (PAN-STARRS)

La cometa C/2011 L4 (PAN-STARRS) è stata scoperta il giorno 06 giugno 2011 nell’ambito del progetto scientifico denominato Panoramic Survey Telescope and Rapid Response System (PAN-STARRS) che si prefigge, con l’ausilio di quattro telescopi computerizzati da 1.8 m di diametro posti sulla cima del vulcano Haleakala sull’isola di Maui (Hawaii, USA), di scoprire il 90% degli asteroidi potenzialmente pericolosi per il nostro pianeta. Il sistema automatico è in grado di misurare la variazione di luminosità degli oggetti nel cielo e quindi studiare stelle variabili o oggetti che si muovono come asteroidi e comete. C/2011 L4 è infatti una di queste: una cometa non periodica che al momento della scoperta brillava di magnitudine 19 (la magnitudine limite di PAN-STARRS è 24). Oggi dei quattro telescopi del “sistema” PAN-STARRS solo uno è operativo, denominato SP1.

La cometa C/2011 L4 raggiungerà il punto di massima vicinanza al Sole (0.30 UA) il giorno 10 marzo 2013, mentre il punto di minima distanza con la Terra si avrà poco prima, il giorno 5 marzo 2013 (1.09 UA). Il Minor Planet Center (MPC) ovvero l’organizzazione dell’Unione Astronomica Internazionale atta alla determinazione delle orbite di comete ed asteroidi, fornisce una stima della luminosità della cometa che riportiamo nel grafico qui sotto. Se inizialmente si pensava ad una luminosità massima prossima a quella di Venere (-4), oggi si stima che essa sarà pari a circa +1 ovvero poco superiore a quella di Saturno.

NEWS: Recentemente (22/01/2013), la rivista Sky&Telescope riporta che, sulla base di stime effettuate dall’astrofilo giapponese Seiichi Yoshida (vedi pagina ASTROlink) la cometa C/2011 L4 (PANSTARRS) raggiungerà una magnitudine massima compresa tra +1.8 e +4. Questo nuovo valore, calcolato sulla base delle ultime misure di luminosità effettuate nell’emisfero australe, dove oggi la cometa è visibile come un astro di +7.1 magnitudine, renderebbe problematica l’osservazione della cometa ai primi di Marzo 2013 tra le luci del tramonto. Quello che si è osservato è una diminuzione della variazione di luminosità della cometa durante il suo moto di avvicinamento al Sole. Questo potrebbe essere dovuto al fatto che la PANSTARRS, essendo una cometa non periodica, sta entrando nel Sistema Solare interno per la prima volta dopo miliardi di anni passati nell’oscurità della nube di Oort. Sulla superficie del nucleo cometario potrebbero quindi essere presenti dei materiali volatili “vergini” che sono sublimati velocemente appena la cometa ha risentito della radiazione solare. Tale incremento di sublimazione ha comportato un aumento di luminosità che ha spinto gli astronomi a supporre una elevata attività cometaria. Attività che è andata via via diminuendo al consumarsi di questo volatile strato superficiale. Aspettiamo comunque una nuova stima delle effemeridi per questa cometa ad opera del Minor Planet Center, anche se, in ogni caso il valore di magnitudine raggiunto dalla cometa Hale-Bopp nel 1997 pari a -0.7 è ormai lontano dal massimo che raggiungerà la PANSTARSS. Il record della grande cometa del secolo scorso rimarrà quindi ancora imbattuto… almeno fino a Novembre 2013 quando la cometa C/2012 S1 (ISON) potrebbe diventare la cometa del XXI secolo.

NEWS: La cometa sta per avvicinarsi sempre più al Sole divenendo un soggetto difficile per gli osservatori dell’emisfero australe. La sua magnitudine è ora (16/02/2013) pari a +5.1 e quindi teoricamente già visibile ad occhio nudo. Le ultime immagini mostrano due code distinte una luminosa lunga 0.5° (polveri) ed una più debole e rettilinea estesa per circa 2° (gas). Al momento il Minor Planet Center non fornisce nuove stime di magnitudine per la cometa per cui il massimo previsto è pari a +0.5, mentre l’astrofilo giapponese Seiichi Yoshida prevede, sulla base dei dati sperimentali, una massima luminosità tra +1.8 e +4.0. Tra pochi giorni C/2011 L4 (PANSTARRS) precipiterà tra le luci diurne rendendosi inosservabile per entrambe gli emisferi. Bisognerà poi aspettare i primi giorni di Marzo 2013 per vederla emergere nell’emisfero boreale tra le luci del crepuscolo serale. Solo allora ne scopriremo la vera luminosità e le dimensioni delle due code. Quindi appuntamento al 06 Marzo 2013, primo giorno (molto teorico) di visibilità della cometa tra le luci del tramonto.

La cometa C/2011 L4 (PAN-STARRS) ripresa il giorno 15/03/2013 da Inverigo (CO)

NEWS: Sono state pubblicate le stime di magnitudine della cometa C/2011 L4 (PANSTARRS) effettuate dal Robotic Telescope FRAM parte del network di telescopi automatici GLORIA. La curva di luce prevede che la cometa raggiungerà una magnitudine massima intorno a +2. Inoltre le misure di indice V-R mostrano che la cometa emette molto nel rosso, indice della presenza di molte polveri nel nucleo cometario. Seppur meno ottimistiche delle prime previsioni del Minor Planet Center, quella di FRAM sono migliori delle stime dell’astrofilo giapponese Seiichi Yoshida: l’ansia da cometa comincia a farsi sentire.

NEWS: La cometa C/2011 L4 PANSTARRS è ora (23/02/2013) di magnitudine + 4.2 e sta sparendo tra le luci del crepuscolo australe. Le ultime misure di luminosità sembrano discordare leggermente dalla curva stimata dall’astrofilo giapponese Seiichi Yoshida mostrando una magnitudine superiore a quella stimata. Il Minor Planet Center per il momento non aggiorna le proprie previsioni. La cometa mostra ora due code ben evidenti ed il nucleo cometario sembra essere, secondo le ultime misure, ricco di polveri. Vedremo cosa succederà dopo il 10 Marzo 2013 quando avrà raggiunto la sua minima distanza dal Sole. Nel frattempo accontentiamoci di osservare le bellissime foto della C/2011 L4 PANSTARRS riprese dall’emisfero australe all’indirizzo http://spaceweather.com/gallery/index.php?title=comet .

NEWS: Ancora buone notizie dalla cometa C/2011 L4 PANSTARRS. Ieri (01/03/2013) ha raggiunto magnitudine +2.5. Le due code sono ora ben visibili e distinte. La luminosità sembra quindi salire ancora a discredito delle stime più pessimistiche. Le prime misure spettroscopiche mostrano un’intensa linea di emissione riconducibile al Sodio. Le ultime immagini della cometa sono visibili all’indirizzo http://www.aerith.net/comet/catalog/2011L4/pictures.html . Ricordiamo che il Minor Planet Center non ha ancora aggiornato le proprie stime di magnitudine che quindi rimangono quelle riportate in questo sito.

NEWS: Ieri sera (08/03/2013) è stata avvistata per la prima volta la cometa C/2011 L4 PANSTARRS dal nostro emisfero (http://spaceweather.com/gallery/full_image.php?image_name=Veerayen-Mohanadas-PanSTARRS-March82013_1362754940.jpg). La luminosità dovrebbe ormai aver raggiunto i suoi valori massimi dato che il punto di massima vicinanza al Sole è ormai vicino (10 Marzo, 0.30 UA). Purtroppo al momento non abbiamo misure in grado di fornirne il valore esatto attuale che dovrebbe attestarsi tra zero e +3. Le strutture non sono al momento visibili in questo emisfero data la limitata altezza dall’orizzonte e la ridotta distanza angolare dal Sole. Aspettiamo con fiducia il migliorare delle condizioni meteo in Lombardia (al momento prevedono cielo coperto fino a venerdì 15 Marzo 2013 con possibilità di schiarite domenica 10 Marzo 2013). Seguiteci… appena avremo delle immagini della cometa le posteremo nell’apposita sezione “Le immagini della cometa C/2011 L4 (PANSTARRS) riprese da ASTROtrezzi”.

L'orizzonte ovest da Inverigo (CO) il 10/03/2013. Il punto più basso è a +1° di altezza dall'orizzonte astronomico. Purtroppo la cometa non è stata avvistata causa nubi.

NEWS: Sostanzialmente da ieri sera (10/03/2013) la cometa C/2011 L4 (PANSTARRS) è visibile dall’Italia. Purtroppo data la limitata altezza dall’orizzonte ovest e la relativamente bassa luminosità, la cometa è difficile da individuare ad occhio nudo. ASTROtrezzi ha provato a riprenderla da Inverigo (CO) con scarso successo. Infatti la velatura non ha permesso l’osservazione e quindi la ripresa della cometa. Da Brenna (CO), a pochi chilometri da Inverigo, la C/2011 L4 era visibile con  difficoltà solo attraverso piccoli telescopi rimanendo invisibile ad occhio nudo e persino attraverso binocoli. Questo probabilmente a causa delle velature presenti. Immagini della cometa ripresa da altri astrofili sono pubblicate su http://spaceweather.com/gallery/index.php?title=comet .

NEWS: Le comete hanno mostrato ancora la loro “imprevedibilità”. Dopo le prime stime di magnitudo che davano la C/2011 L4 a – 4, successivamente corrette a +1 e quindi sino a +4 secondo le previsioni più pessimistiche oggi possiamo dire che la cometa sta puntando a magnitudini prossime allo zero (come calcolato sin dall’inizio del Minor Planet Center). La curva di luminosità ha infatti cambiato di nuovo pendenza, incrementando di molto la luminosità della PANSTARRS. Peccato per la scarsa altezza della cometa dall’orizzonte ovest e le condizioni meteorologiche lombarde di questi giorni.

Le tre code distinte della cometa C/2011 L4 (PANSTARRS)

NEWS: Prima osservazione della cometa PANSTARRS il giorno 14/03/2013 da Giussano (MB) e prima ripresa fotografica il giorno seguente da Inverigo (CO). L’immagine della cometa è visibile nella sezione Le immagini della cometa C/2011 L4 (PANSTARRS) riprese da ASTROtrezzi. Confermiamo che la cometa è praticamente visibile con notevole difficoltà ad occhio nudo solo quando questa si trova ormai bassissima sull’orizzonte ovest. Mostra invece una bella coda piuttosto aperta in un piccolo binocolo. La prima ripresa fotografica mostra una coda di ioni ed una di polveri di dimensioni superiore al mezzo grado e separate tra loro di un angolo pari a circa 6.4° (stime preliminari). Il moto proprio stimato per il giorno 15/03/2013 da ASTROtrezzi (preliminare anch’esso) è pari a 4.6 arcsec/min rispetto al valore teorico di 5.94 (Minor Planet Center). Il nucleo/chioma presenta una struttura sferica senza strutture di rilievo. Malgrado questo, l’astrofilo Peter Rosen ha ripreso il 15/03/2013 un punto luminoso vicino alla cometa PANSTARRS che farebbe pensare ad una possibile frammentazione parziale del nucleo. La notizia non è stata confermata e proveremo a confrontare quanto ottenuto con le nostre immagini riprese il medesimo giorno. La coda di polveri invece ha mostrato una forte emissione nel giallo (Sodio), come atteso dalle misure spettroscopiche effettuate agli inizi di Marzo dall’emisfero australe.

NEWS: Dall’analisi dell’immagine della cometa C/2011 L4 (PANSTARRS) ripresa il 15/03/2013 da ASTROtrezzi presso Inverigo (CO) si evince la presenza di ben tre code distinte. La più brillante è la coda di polveri di tipo II (cioè coda di polveri poco curvata) che segue il nucleo cometario seguendo la traiettoria attuale della cometa, una seconda sempre composta da polveri, appena pronunciata ma molto aperta, di tipo III (cioè coda di polveri curvata) che tiene memoria dell’orbita cometaria ed infine una coda di tipo I (coda di ioni) opposta al Sole. Altre immagini disponibili in rete (http://spaceweather.com/gallery/indiv_upload.php?upload_id=79317) mostrano una seconda coda di tipo I inclinata rispetto alla prima di colore blu, per un totale di ben quattro code distinte. La coda blu è sicuramente composta da ioni di monossido di Carbonio CO+, mentre la composizione chimica della prima coda di ioni è oggetto di discussione. La coda di polveri è sostanzialmente composta da Sodio come mostrato da alcune analisi spettroscopiche a nostra disposizione. La coda di ioni potrebbe essere anch’essa composta da ioni di Sodio dato che non è visibile nel canale B di ripresa oppure da ioni di Ferro come da noi ipotizzato dato che la componente B della coda potrebbe essere coperta dal colore azzurro del cielo al tramonto. Infatti secondo una nostra analisi i canali R, G e B assumerebbero praticamente lo stesso valore di livello di luminosità dando quindi luogo ad una coda bianca, tipica dell’emissione del Ferro. Solo un cielo buio ci permetterà forse di risolvere l’arcano. Non ci resta quindi che aspettare l’allontanamento della cometa dal Sole.

NEWS: Karl Battams del Naval Research Lab, dopo aver visionato le immagini della cometa PANSTARRS riprese dalla sonda STEREO (http://www.youtube.com/watch?v=bHL7H1f5LOs) ha escluso (20/03/2013) la possibile frammentazione del nucleoosservata dall’astrofilo Peter Rosen.

Confronto tra le ultime due riprese della come PANSTARRS effettuate da ASTROtrezzi

NEWS: La cometa PANSTARRS si allontana ogni giorno di più dal Sole, aumentando la sua altezza dall’orizzonte e quindi permettendo la ripresa contemporanea delle stelle. Dalla costellazione dei Pesci e passata ora (21/03/2013) a quella di Andromeda. La luminosità si mantiene elevata e la coda di polveri si mostra ampia e ben sviluppata (dalle ultime riprese risulta superiore al grado). La coda di ioni CO+ è stata ripresa solo da pochissimi astrofili ed al momento è ancora nascosta tra le luci del tramonto. La seconda coda di ioni ripresa il 15/03/2013 non compare nella ripresa del 21/03/2013. Aspetteremo altre riprese per studiarne l’evoluzione. Malgrado la smentita del Naval Reaseatch Lab, alcuni astrofili dichiarano di aver visto e ripreso il distaccamento di alcuni frammenti del nucleo cometario (http://spaceweather.com/gallery/indiv_upload.php?upload_id=79776). Aspettiamo quindi notizie ufficiali.

C/2011 L4 (PAN-STARRS) - 13/04/2013

NEWS: La cometa C/2011 L4 (PANSTARRS) sta lentamente spostandosi verso nord aumentando, seppur di poco, la propria altezza dall’orizzonte. Il 04 Aprile 2013 ( https://www.astrotrezzi.it/?page_id=2687 ) si è verificata la congiunzione con la galassia di Andromeda (M31), invisibile dalla Lombardia a causa delle condizione meteo. Una bellissima immagine dell’evento è riportata in http://spaceweather.com/gallery/indiv_upload.php?upload_id=80426 . Il giorno 03 Aprile 2013 si è comunque cercato di riprendere la coppia cometa – galassia di Andromeda, ma le nebbie serali e l’inquinamento luminoso non hanno permesso l’individuazione della cometa (e tanto meno della galassia). Purtroppo la scarsa altezza della cometa dall’orizzonte e le condizioni meteo di questo 2013 hanno ostacolato non poco la ripresa dell’astro chiomato. ASTROtrezzi manterrà in home page questa sezione fino al 31 Luglio 2013 quando la cometa PANSTARRS avrà raggiunto la luminosità della seconda grande cometa dell’anno: la cometa ISON. Dal 01 Agosto 2013 sarà lei a dominare la scena. Potrete comunque sempre accedere allo SPECIALE COMETA C/2011 L4 (PAN-STARRS) passando dalla pagina SPECIALE COMETE 2013.

NEWS: La cometa C/2011 L4 (PANSTARRS) è ormai nella costellazione di Cassiopea divenendo così visibile sia dopo il tramonto del Sole che la mattina prima dell’alba. Il giorno 13 Aprile 2013 la cometa è stata osservata ad occhio nudo da ASTROtrezzi a Saint-Barthélemy – AO, Italia (Italy) quando la sua magnitudine è ormai al limite della visibilità essendo pari secondo le stime del Minor Planet Center a +6.0. In un binocolo la cometa appare comunque ancora molto bella e molto imponente. La coda non ha cambiato forma e la coda di ioni è praticamente scomparsa (sia quella di ioni CO+ che di Ferro/Sodio). Le ultime misure spettroscopiche vedono sparire la linea del Sodio. Come mai? Vedremo se future misure confermeranno il risultato ottenuto dagli spettroscopisti amatoriali.

Cometa C/2011 L4 (PANSTARRS) - 11/05/2013

 NEWS: La cometa PANSTARRS è sempre più lontana dalla Terra e oggi (24/05/2013) appare come un batuffolo di magnitudine + 9.0 (stime Minor Planet Center). La coda di ioni sembra ormai un lontano ricordo ed ora si registra un’ampia coda di polveri che termina con una lunga anti-coda. ASTROtrezzi ha ripreso la C/2011 L4 da Saint-Barthélemy come riportato a lato. Purtroppo l’immagine non è curata e quindi non è presente una pagina tecnica dedicata. Verso la fine del mese di Maggio la PANSTARRS passerà a pochi gradi dal Polo Celeste Nord, ma date le condizioni meteo e la Luna ormai Piena immagino che sarà difficile riprenderla.

NEWS: La C/2011 L4 è ormai una debole cometa di magnitudo intorno alla +10 localizzata tra la costellazione dell’Orsa Minore e quella del Drago. In questo ultimo periodo le condizioni meteo e la revisione della strumentazione astronomica di ASTROtrezzi non hanno permesso riprese della cometa. Malgrado questo, in prossimità del taglio orbitale avvenuto il 27 Maggio 2013 la cometa ha mostrato una delle più grandi anticode degli ultimi 35 anni estesa per più di 8 gradi (si legga ad esempio http://www.osservatoriosormano.it/newsdett/137/L%27altra-faccia-della-Cometa ). Ed è sempre la coda della PANSTARRS che apre questioni misteriose sulla natura stessa della cometa che potrebbe essere extra-solare. Infatti benché sia stata osservata la presenza di Sodio e Potassio neutro, manca completamente la linea del Litio. Un articolo dettagliato su quest’ultimo argomento è disponibile all’indirizzo http://www.coelum.com/news/comete-dell%E2%80%99altro-mondo . Aspettando la cometa ISON non ci rimane che salutare questa misteriosa cometa che, dopo averci fatto disperare tra le luci del tramonto e dell’alba con la sua luminosità si elevata ma mai abbastanza per distinguerla senza difficoltà tra le luci del crepuscolo, alla fine ci ha offerto uno spettacolo grandioso in termini di anti-coda .

NEWS:Siamo a Luglio 2013 e la cometa PAN-STARRS sta abbandonando per sempre il nostro Sistema Solare. La magnitudine è oggi (18/07/2013) stimata dal Minor Planet Center intorno alla +11.6; praticamente invisibile al telescopio e ripresa con difficoltà attraverso telescopi amatoriali. Settimana prossima ASTROtrezzi sostituirà in home page lo “SPECIALE COMETA C/2011 L4 (PAN-STARRS)” con lo “SPECIALE COMETA C/2012 S1 (ISON)”. Questa pagina non verrà più aggiornata ma rimarrà comunque visibile su www.astrotrezzi.it nella sezione “SPECIALE COMETE 2013”. Al termine di questo viaggio passato insieme alla C/2011 L4, dai primi giorni di “ricerca” tra le luci del giorno ad oggi tenue barlume luminoso nella profondità del Cosmo, possiamo dire che la PAN-STARRS è stata comunque una grande cometa.

C/2011 L4 (PAN-STARRS) - 05/07/2013

La sua coda “a ventaglio” e meglio ancora la sua anticoda ha dato uno spettacolo unico e mai visto. Inoltre è stato bellissimo osservarla ad occhio nudo non al tramonto (come atteso), ma poco prima dell’alba intorno alla metà di Aprile. Dopo la cometa Hale Bopp che tanto diede spettacolo nell’ormai lontano 1997, la PAN-STARRS è sicuramente una delle migliori comete visibili dal nostro emisfermo negli ultimi 16 anni. Questo sarà l’ultimo aggiornamento che riguarda questa cometa postato su ASTROtrezzi.it… quindi che dire se non un “Ciao PANNY” a questa grande cometa che piano piano si sta allontanando per sempre dal nostro Sistema Solare verso mete tanto distanti quanto ignote.

L'andamento della lumionsità della cometa C/2011 L4 in funzione del tempo. In nero è stato colorato il periodo in cui la cometa non sarà visibile dai cieli boreali. In rosso, verde e viola le luminosità medie dei pianeti Saturno, Urano e del pianeta nano Plutone. (Stime MPC aggiornate al 15/01/2013)

 

 




Orbita delle Comete

Come tutti i corpi del Sistema Solare, anche le comete seguono un cammino ben preciso noto generalmente con il termine di orbita. La forza di gravità permette, per un’interazione a due corpi (Sole – cometa), quattro tipi differenti di orbite: circolari, ellittiche, paraboliche ed iperboliche. Queste forme geometriche derivano dalla natura stessa della forza gravitazionale e matematicamente prendono il nome di coniche (perché si ottengono tagliando un cono con un piano). Un’orbita circolare è molto difficile da trovare in natura e la stessa Terra approssima tale orbita essendo in realtà un ellisse con eccentricità prossima a zero. Quindi, trascurando le orbite circolari, le comete manifestano tutte le altre tre possibili coniche. Nel caso di orbite ellittiche si parla di comete periodiche in quanto la cometa ritornerà nello stesso punto dell’orbita dopo un periodo di rivoluzione intorno al Sole, mentre nel caso di orbite paraboliche o iperboliche si parla di comete non periodiche o extrasolari, dato che tali comete non ripasseranno più nei pressi del Sole. Riassumendo quindi, a seconda della loro orbita, le comete vengono suddivise in:

  • Comete a corto periodo: con un periodo di rivoluzione massimo di 200 anni. La maggior parte di queste comete si muovono sul piano dell’eclittica (piano ideale dove ruotano tutti i pianeti del Sistema Solare) e nel senso di rivoluzione degli altri pianeti del Sistema Solare. La massima distanza dal Sole (afelio) varia da poco oltre l’orbita di Nettuno come la cometa di Halley a quella interna a Giove, come nel caso della cometa di Encke. Vengono così divise in due sottofamiglie a seconda del loro periodo di rivoluzione e quindi della loro distanza dal Sole:  famiglia cometaria di Giove ( minore di 20 anni) e famiglia cometaria di Halley ( maggiore di 20 anni e minore di 200 anni).
  • Comete a lungo periodo: hanno un periodo che varia da 200 a milioni di anni. Il limite superiore è dettato dalla precisione raggiunta nel determinare se una cometa ha un lunghissimo periodo o è di tipo non periodica. Arrivano da regioni esterne a Nettuno e il loro piano orbitale non coincide necessariamente con il piano dell’eclittica.
  • Comete non periodiche o extrasolari: comete che percorrono orbite paraboliche o iperboliche e che quindi abbandoneranno per sempre il Sistema Solare una volta passate nelle vicinanze del Sole.

A volte le comete che sfiorano la superficie solare durante il loro punto di minima distanza dal Sole (perielio) vengono dette comete sun-grazing.

ORIGINE E MORTE DELLE COMETE

Secondo le ipotesi attuali, le comete hanno origine nel disco diffuso e nelle nubi di Hills e Oort. A seguito di perturbazioni gravitazionali indotte dalla nostra galassia (la Via Lattea) o dal passaggio di stelle in prossimità del Sole, i corpi minori (nuclei cometari) delle nubi di Oort e Hills possono muoversi nella direzione del Sole dando così luogo alla formazione delle comete. A seconda della velocità della cometa, questa può assumere un orbita di tipo ellittico, parabolico o iperbolico. Nel primo caso darà luogo, come detto, a comete di tipo periodico mentre negli altri casi a comete extrasolari. Queste ultime dopo il primo ed ultimo passaggio intorno al Sole abbandoneranno per sempre il Sistema Solare.

Le comete periodiche invece cominceranno, come i pianeti, a ruotare intorno al Sole con orbite più o meno eccentriche. Dato che ad ogni passaggio ravvicinato con il Sole, una cometa perde parte dei materiali volatici che la formano, dopo un numero di rivoluzioni comprese tra 1000 e 100 mila questa si ritroverà praticamente svuotata. Il nucleo di tali comete, costituito unicamente da materiali non volatili continuerà il suo moto disgregandosi lentamente nel tempo in piccoli frammenti.

Infine una cometa, durante il passaggio tra i pianeti del Sistema Solare, potrebbe schiantarsi su uno di questi. Nel caso di pianeti giganti (Giove in primis), oltre all’impatto è possibile anche la frammentazione ad opera dei forti effetti gravitazionali indotti da questi pianeti.




La fascia di Kuiper e la nube di Oort

LA FASCIA DI KUIPER

Oltre Nettuno, nello spazio più profondo del Sistema Solare, si trovano dei corpi minori di cui il più famoso è l’ormai ex-pianeta Plutone. Originariamente si pensò a Plutone come all’ultimo pianeta del Sistema Solare, eppure molti altri “pianeti” oggi noti come pianeti nani sono stati trovati proprio in questa regione che si estende tra 30 e 50 UA (Unità Astronomiche ovvero la distanza Terra – Sole pari a circa 150 milioni di chilometri). Il maggiore di questi oggi non è più Plutone, ma Eris scoperto nel 2005 da Michael Brown, Chad Trujillo e David Rabinowitz. Oltre ad Eris e Plutone oggi conosciamo più di 100000 corpi minori sopra i 100 km (Kuiper Belt Objects – KBO) e molti altri di dimensioni persino confrontabili alla Terra e Marte potrebbero venire scoperti nei prossimi anni. Misure spettroscopiche mostrano però differenze sostanziali tra questi KBO e gli asteroidi, rendendoli più simili a dei nuclei cometari.

Questo indusse a pensare che la fascia di Kuiper fosse il bacino delle comete periodiche. Oggi sappiamo però che la fascia di Kuiper è formata da corpi minori che orbitano su orbite stabili e quindi generalmente non attraversano mai le regioni interne del Sistema Solare. Oltre la fascia di Kuiper però, fino a 100 UA, esiste una regione nota come il disco diffuso.  Questa è caratterizzata da corpi simili a i KBO (noti come Scattered Disk Objects – SDO) ma che, a differenza di questi, presentano orbite instabili. L’instabilità dell’orbita li porta spesso a “precipitare” nella direzione del Sole dando luogo alla formazione delle comete periodiche e dei centauri (asteroidi di tipo cometario con orbita compresa tra Giove e Nettuno).

Sia i KBO che i SDO sono diretti discendenti dei planetesimali che si sono accorpati nelle prime fasi di formazione del Sistema Solare, costituendo quelli che sono i pianeti attuali le cui orbite sono state modellate dalla presenza dei giganti gassosi, primo tra tutti Giove.

LA NUBE DI OORT

Oltre Nettuno, oltre la fascia di Kuiper e persino oltre il disco diffuso sono stati trovati ancora dei corpi minori detti detached objects. Al momento ufficialmente riconosciuti sono solo nove i detached objects di cui il principale è Sedna (scoperto nel 2003 dallo stesso team di ricercatori che due anni dopo scoprirono Eris) che raggiunge una distanza minima dal Sole pari a 76 UA ed una massima di ben 900 UA. Il suo diametro, compreso tra i 1200 ed i 1800 km è comparabile con quello degli altri pianeti nani, categoria che forse un giorno verrà associata anche a questo lontano corpo celeste.

Da 1000 a 2000 UA molto probabilmente non si trova nessun corpo celeste e questo rende l’estremo confine del Sistema Solare una regione buia ed estremamente vuota. Ma a partire da 2000 UA fino a 20000 UA (0.03 – 0.32 Anni Luce) ritroviamo una vasta popolazione di corpi minori che occupano una regione a ciambella intorno al Sole nota come nube di Hills. Tali oggetti celesti, probabilmente nuclei cometari di comete a lungo periodo, sono stimati essere decine o centinaia di migliaia di miliardi. Ma non è finita qui. All’esterno della nube di Hills si trova un’altra nube, questa volta di forma sferica, che si estende da 20000 UA a 50000 UA (0.32 – 0.79 Anni Luce) nota come nube di Oort. Anche questa è formata da corpi minori che però questa volta sono più diradati essendo in numero “solo” circa un migliaio di miliardi. Anche questi ovviamente si credono essere i nuclei di comete a lungo periodo.

Sia gli oggetti della nube di Hills sia quelli della nube di Oort si sono planetesimali formati all’inizio del Sistema Solare. Attuali ipotesi affermerebbero che la nube di Oort sia in realtà formata dagli oggetti “scappati” dalla nube di Hills e quindi si sarebbe formata successivamente a quest’ultima.




Il nome delle comete

La procedura utilizzata dalla comunità astronomica internazionale per denominare le comete venne formulata nel 1995 e applicata a tutte le comete, sia quelle scoperte dopo tale anno che quelle del passato.

I nomi delle comete iniziano pertanto con una lettera secondo il seguente schema:

  • C/ : cometa non periodica come la famosa cometa Hale-Bopp C/1995 O1.
  • P/ : cometa periodica. Un esempio è la cometa periodica Hug-Bell scoperta nel 1999 denominata P/1999 X1.
  • D/ : cometa periodica di cui non è possibile prevederne con precisione il ritorno, che non è stato riavvistato il ritorno o che è andata distrutta. Un esempio è la cometa Shoemaker-Levy 9 scoperta nel 1993 è schiantatasi su Giove nel 1994 denominata D/1993 F2.
  • X/ : cometa che non è possibile determinare se periodica o non periodica. Un esempio è la cometa X/1896 S1 della quale non si riuscì a misurarne con precisione i parametri orbitali.

A tale lettera va successivamente aggiunto l’anno della scoperta seguito, dopo uno spazio vuoto, da una lettera che indica il semi-mese di scoperta secondo lo schema:

  • A: 1-15 gennaio
  • B: 16-31 gennaio
  • C: 1-15 febbraio
  • D: 16-29 febbraio
  • E: 1-15 marzo
  • F: 16-31 marzo
  • G: 1-15 aprile
  • H: 16-30 aprile
  • J: 1-15 maggio
  • K: 16-31 maggio
  • L: 1-15 giugno
  • M: 16-30 giugno
  • N: 1-15 luglio
  • O: 16-31 luglio
  • P: 1-15 agosto
  • Q: 16-31 agosto
  • R: 1-15 settembre
  • S: 16-30 settembre
  • T: 1-15 ottobre
  • U: 16-31 ottobre
  • V: 1-15 novembre
  • W: 16-30 novembre
  • X: 1-15 dicembre
  • Y: 16-31 dicembre

A tale lettera va successivamente aggiunto un numero progressivo che tiene conto del numero di comete scoperte nel semi-mese considerato. Il suffisso -A, -B, … può essere aggiunto nel caso in cui la cometa si sia successivamente frammentata in più parti.

I cognomi degli scopritori, fino ad un massimo di tre, può essere aggiunto o prima del simbolo C/, D/ ed X/ o dopo il nome della cometa, tra parentesi tonde. Lo stesso vale nel caso in cui lo scopritore sia una all-sky survey come il Lincoln Near Earth Asteroid Research (LINEAR), il Near-Earth Asteroid Tracking Program (NEAT), il Catalina Sky Survey (CSS), il Lulin Sky Survey (Lulin), il Lowell Observatory Near-Earth Object-Search (LONEOS), il Siding Spring Survey (SSS), il Panoramic Survey Telescope And Rapid Response System (Pan-STARRS) ed l’International Scientific Optical Network (ISON)  oppure sonde spaziali come la Solar and Heliospheric Observatory (SOHO), la Solar Maximum Mission (SMM), la Solwind (SOLWIND) e la Solar TErrestrial RElations Observatory (STEREO) o ancora progetti di ricerca come il Spacewatch (Spacewatch). Se gli scopritori hanno lo stesso cognome, allora questo viene riportato una sola volta. Infine nel caso in cui un astronomo scopra più comete è possibile aggiungere un numero progressivo al cognome.

Solo per le comete periodiche è possibile utilizzare la nomenclatura per cui il numero progressivo di comete periodiche scoperte viene seguito dalla lettera P/ ed il cognome dello scopritore.

Esiste poi la possibilità che un corpo minore in realtà sia una cometa. In questo caso viene mantenuto il nome originale assegnato dal Minor Planet Center a cui viene aggiunto il prefisso C/ o P/. In questo ultimo caso può essere rinominato con la nomenclatura delle comete periodiche.