1

NGC 6888 – 31/05/2014

Telescopio o obiettivo di acquisizione (Imaging telescope or lens): Newton SkyWatcher BlackDiamond 150 mm f/5

Camera di acquisizione (Imaging camera): Canon EOS 40D (filtro LPF2 rimosso / LPF2 filter removed) [5.7 μm]

Montatura (Mount): SkyWatcher NEQ6

Telescopio o obiettivo di guida (Guiding telescope or lens): Rifrattore ED (ED reftactor) Tecnosky Carbon Fiber 80mm f/7

Camera di guida (Guiding camera): Magzero MZ-5m B/W [5.2 μm]

Riduttore di focale (Focal reducer): non presente (not present)

Software (Software): IRIS + Adobe Photoshop CS3

Accessori (Accessories): correttore di coma Baader MPCC (coma corrector)

Filtri (Filter):  non presente (not present)

Risoluzione (Resolution): 3888 x 2592 (originale/original), 3868 x 2555 (finale/final)

Data (Date): 31/05/2013

Luogo (Location): Saint-Barthélemy – AO, Italia (Italy)

Pose (Frames): 13 x 600 sec at/a 800 ISO.

Calibrazione (Calibration): 4 x 600 sec dark, 52 bias, 51 flat

Fase lunare media (Average Moon phase): 9.2%

Campionamento (Pixel scale): 1.2797 arcsec/pixel

Focale equivalente (Equivalent focal lenght): 750 mm

Note (note):

NGC 6888 - 31/05/2014




M64 (NGC 4826) – 24/05/2014

Telescopio o obiettivo di acquisizione (Imaging telescope or lens): Ritchey-Chrétien GSO 203 mm f/8

Camera di acquisizione (Imaging camera): Canon EOS 500D (Rebel T1i) modificata Baader (Baader modded) [4.7 μm]

Montatura (Mount): SkyWatcher NEQ6

Telescopio o obiettivo di guida (Guiding telescope or lens): Rifrattore acromatico SkyWatcher 102mm f/5

Camera di guida (Guiding camera): Magzero MZ-5m B/W [5.2 μm]

Riduttore di focale (Focal reducer): non presente (not present)

Software (Software): IRIS + Adobe Photoshop CS3

Accessori (Accessories): non presente (not present)

Filtri (Filter):  non presente (not present)

Risoluzione (Resolution): 4752 x 3168 (originale/original), 4770 x 3178 (finale/final)

Data (Date): 24/05/2014

Luogo (Location): Passo Albiga – LC, Italia (Italy)

Pose (Frames): 8 x 600 sec at/a 800 ISO.

Calibrazione (Calibration): 4 x 600 sec dark, 34 bias, 34 flat

Fase lunare media (Average Moon phase): 14.8%

Campionamento (Pixel scale): 1071.87/1958.17 = 0.5474  arcsec/pixel

Focale equivalente (Equivalent focal lenght): 1771 mm

Note (note): Riportiamo l’immagine originale ed un crop per ridurre il coma residuo dell’RC / We report the original picture a crop version in order to exclude the RC residual coma.

M64 (NGC 4826) - 24/05/2014 | versione originale

M64 (NGC 4826) - 24/05/2014 | versione ritagliata




M57 (NGC 6720) – 24/05/2014

Telescopio o obiettivo di acquisizione (Imaging telescope or lens): Ritchey-Chrétien GSO 203 mm f/8

Camera di acquisizione (Imaging camera): Canon EOS 500D (Rebel T1i) modificata Baader (Baader modded) [4.7 μm]

Montatura (Mount): SkyWatcher NEQ6

Telescopio o obiettivo di guida (Guiding telescope or lens): Rifrattore acromatico SkyWatcher 102mm f/5

Camera di guida (Guiding camera): Magzero MZ-5m B/W [5.2 μm]

Riduttore di focale (Focal reducer): non presente (not present)

Software (Software): IRIS + Adobe Photoshop CS3

Accessori (Accessories): non presente (not present)

Filtri (Filter):  non presente (not present)

Risoluzione (Resolution): 4752 x 3168 (originale/original), 4770 x 3178 (finale/final)

Data (Date): 24/05/2014

Luogo (Location): Passo Albiga – LC, Italia (Italy)

Pose (Frames): 8 x 600 sec at/a 800 ISO.

Calibrazione (Calibration): 4 x 600 sec dark, 34 bias, 34 flat

Fase lunare media (Average Moon phase): 14.8%

Campionamento (Pixel scale): 1071.87/1958.17 = 0.5474  arcsec/pixel

Focale equivalente (Equivalent focal lenght): 1771 mm

Note (note): Riportiamo l’immagine originale ed un crop per ridurre il coma residuo dell’RC / We report the original picture a crop version in order to exclude the RC residual coma.

M57 (NGC 6720) - 24/05/2014 | Immagine originale

M57 (NGC 6720) - 24/05/2014 | versione ritagliata




Due Anni con ASTROtrezzi: la storia continua…

Come consuetudine eccoci all’appuntamento annuale con ASTROtrezzi, per scoprire insieme quanto fatto ad un anno di distanza dall’articolo www.astrotrezzi.it/?p=3374 . Ovviamente non si può non esordire con un grazie a tutti voi che quotidianamente ci seguite sul sito, sulla pagina facebook dedicata e sul forum Juzaphoto. Iniziamo con il dire che le condizioni meteorologiche della seconda parte del 2013 e di questa prima parte del 2014 non sono certo state delle più favorevoli. Malgrado questo siamo riusciti a garantire 115 nuovi post con una media di circa uno ogni tre giorni. Il numero di pagine è però diminuito portandosi dalle 58 del 2013 alle 46 del 2014. Questo perché a partire dall’inizio di quest’anno abbiamo rimosso lo “SPECIALE COMETE 2013” che è stato convertito in un articolo di rassegna.

I nuovi post consistono in nuove immagini astronomiche e articoli tecnici che vanno ormai a riempire quella che è la guida all’Astrofotografia Digitale, ormai un riferimento nel mondo dell’astrofotografia italiana. Inoltre a partire dalla fine del 2013 è disponibile on-line ed in forma completamente gratuita l’ebook “ASTROFOTOGRAFIA per tutti” divenuta testo consigliato in corsi di fotografia tradizionale. Come promesso l’anno scorso, ASTROtrezzi è sbarcato anche nel cartaceo. In particolare ci siamo occupati dello speciale sulla cometa ISON della rivista COELUM, una delle maggiori nel nostro paese in ambito astronomico amatoriale. Inoltre è apparso sul numero di Aprile 2014 della rivista Fotografare un lungo articolo completamente dedicato a noi.

ASTROtrezzi è ormai un punto di riferimento per gli astrofotografi, specialmente non specialisti, dove trovare molto materiale tecnico e un continuo supporto. Questa notizia è ovviamente positiva e rispecchia appieno lo spirito del sito.

I visitatori sono passati dai 9251 dell’anno scorso ai 28951 di quest’anno. Praticamente abbiamo triplicato le visite, un trend decisamente difficile da mantenere in futuro ma di cui al momento ne andiamo molto orgogliosi. Anche le pagine lette hanno raggiunto quota 101203 rispetto alle 36834 dello scorso anno. Osservando nel dettaglio le visite mensili possiamo notare un incremento medio cui è sovrapposto un picco dovuto al passaggio al perielio della cometa ISON, evento pubblicizzato molto dai media e seguito in diretta su ASTROtrezzi.

"Astrofotografia per tutti", l'ebook gratuito realizzato e curato da ASTROtrezzi

La percentuale dei visitatori italiani è tornata a ricrescere ed ora si assesta al 91.30%. Questo a seguito di un ritorno allo “spirito nazionale” del nostro sito. Infatti seppur i dati tecnici delle immagini sono scritti sia in Italiano che in Inglese, il bilinguismo è praticamente sparito dalle newsletter e dalla pagina facebook del sito. Tra i visitatori non italiani registriamo un 1.56% di Americani, 0.88% di Svizzeri, 0.71% di Canadesi, 0.48% di Francesi, 0.42% di Spagnoli ed infine uno 0.36% di Tedeschi. Come per il 2013 verifichiamo un aumento dei visitatori statunitensi a seguito molto probabilmente della pubblicazione di foto sui siti internazionali quali astrobin e spaceweather. I cittadini elvetici, principalmente ticinesi, si confermano assidui lettori del nostro sito.

Per quanto riguarda invece le visite nazionali, la città amica di ASTROtrezzi non è più Milano ma Roma con il 14.50% delle visite. Per la prima volta il sito lascia la regione d’origine per proiettarsi sul panorama nazionale.  Milano comunque rimane sempre la seconda città con il 12.56% delle visite totali. A seguire troviamo Torino (4.47%), Palermo (3.57%), Bologna (3.55%) ed infine Firenze che si assesta al 2.76%. Genova è praticamente in caduta libera ed ora si trova oltre Padova e Perugia. New entry è quindi Firenze a cui non resta che dare il benvenuto.

Social Network

ASTROtrezzi rimane social attraverso i canali Facebook, Twitter e Google+. Abbiamo aperto anche un canale Youtube in via ancora sperimentale. Il punto di forza rimane comunque sempre Facebook dove quotidianamente vengono postate notizie e immagini. Gli ASTROtrezzini sono sempre in aumento e se l’anno scorso erano 136 oggi sono ben 259: quasi il doppio! Si è deciso di premiare il 500° “mi piace” alla pagina con una foto… quindi avvisate i vostri amici e accorrete numerosi!

Una novità è che oggi gli ASTROtrezzini sono spesso non “amici” dell’autore del sito e questo ci onora in quanto indica quanto ASTROtrezzi sia sempre più una entità separata da Davide Trezzi.

Dei 259 fan della nostra pagina, il 69% sono uomini, con un incremento del 2.6% rispetto all’anno scorso. Questo trend osservato anche durante il primo anno di vita del sito dimostra che ASTROtrezzi è più vicino agli uomini che alle donne. A queste ultime rinnoviamo quindi l’invito a mandare i propri suggerimenti a davide@astrotrezzi.it . La necessità di un sito più “rosa” sta ormai divenendo un’urgenza. La fascia di età favorita su Facebook rimane ancora quella tra 25 e 34 anni, indipendentemente dal sesso.

Juza

La sempre prolifica partecipazione al forum Juzaphoto continua confermandosi con uno Juza Editor’s Pick vinto il 15/11/2013 (vedi https://www.astrotrezzi.it/?p=4178). Al momento su quello che è il sito di riferimento della fotografia italiana ASTROtrezzi ha postato 119 fotografie supportate da ben 1235 commenti. Il supporto agli astrofotografi meno esperti è sempre stato un obiettivo per ASTROtrezzi e Juza ne è il veicolo di comunicazione. Le visite, seppur con un tasso inferiore, aumentano giorno dopo giorno e dalle 37798 dell’anno scorso siamo arrivati a 89205 visite.

Cosa abbiamo fatto e cosa faremo

Quello che abbiamo scritto sino ad ora è una descrizione di quanto abbiamo realizzato a seguito delle promesse fatte l’anno scorso in occorrenza del primo anno di ASTROtrezzi. La prima novità per il 2015 sarà, come già annunciato in precedenza, ad un ritorno al carattere italiano del sito internet. Abbandoneremo quindi l’intento di diventare un sito internazionale per concentrarci maggiormente sul nostro paese. Il contatto con il mondo non verrà comunque perso grazie a siti quali AstroBin e Spaceweather dove ASTROtrezzi sarà comunque presente. Nel 2014 abbiamo deciso di togliere l’area Riservata dove erano presenti i dati grezzi delle immagini (file RAW, PIC e FIT). Questo a causa dell’eccessivo tempo di upload. Le immagini originali verranno pertanto conservate su dischi fissi locali. La newsletter, aperta in concomitanza con il primo compleanno del sito, oggi è costituita da ben 43 iscritti che vengono costantemente informati delle notizie relative al sito.

Come promesso nel 2013, ASTROtrezzi ha intensificato la sua presenza sul territorio grazie ad incontri e conferenze (Osservatorio Astronomico di Sormano, Meda, Cogliate, Trezzano sul naviglio) e corsi (Barzago e Verano Brianza, presso il Gruppo Amici del Cielo). Lo “SPECIALE COMETE 2013”, completo in tutte le sue parti, è stato un portale di informazione fantastico come gli stessi utenti ci hanno fatto notare. L’esperienza di tale “speciale” sarà sicuramente da ripetere in occasione di eventi astronomici futuri.

Il Concorso Astrofotografico 2013 ha ottenuto il successo voluto con la premiazione di tre vincitori (Massimiliano Maura, Rosario Magaldi, Marco Valli & Marco Tentori). Inoltre il concorso è stato affiancato dal Premio ARTESky2013 offerto dal nostro sponsor, leader nella vendita e costruzione di telescopi. Nei prossimi giorni verrà pubblicato il bando per il Concorso Astrofotografico 2014 ormai alla sua terza edizione.

Ovviamente abbiamo mantenuto le promesse anche per quanto riguarda lo sviluppo software. Il progetto Constellation ha infatti avuto inizio e i primi due programmi, Virgo e Cancer sono già disponibili sul sito di cui il primo funzionante anche su Android (tablet e smartphone). Inoltre, grazie a Matteo Manzoni, ASTROtrezzi si è aperto all’OpenSource con articoli tecnici su Linux&Astronomia.

Direi che ad oggi possiamo affermare di aver realizzato tutto quanto promesso l’anno scorso in occasione del primo compleanno del sito. Ma non ci siamo limitati a fare “solo” questo. Il sito internet infatti ha subito un restyling a partire dal logo e dalla disposizione dei menù, ora non soltanto laterali ma anche a tendina. Inoltre www.astrotrezzi.it è disponibile ora anche in versione mobile. In questo modo il sito sarà più accessibile per coloro che vorranno seguirci anche da cellulari e tablet. Purtroppo il tempo passa e ben presto il astrotrezzi.it avrà bisogno di un restyling completo, sia per questioni di compatibilità che di accessibilità. Questo tipo di aggiornamento piuttosto rischioso per l’integrità del sito, verrà applicato solo nella prima metà del 2015.

I vincitori del premio ARTESKY2013 (Massimiliano Maura, Rosario Magaldi, Maia Mosconi)

Abbiamo inoltre aperto una sezione wallpaper dove potrete scaricare bellissimi sfondi di ASTROtrezzi per i vostri smartphone e tablet. Occasione unica nel suo genere, gli sfondi potranno essere scaricati anche privi del logo identificativo del sito.

Punto importante è l’inaugurazione della sezione ASTROricerca dove sono stati organizzati gruppi di lavoro su progetti di ricerca di astronomia amatoriale. Tali lavori, mai realizzati in Italia (e spesso nella comunità internazionale), saranno oggetti di sottomissioni a riviste scientifiche nazionali e/o internazionali. Al momento sono due i gruppi di lavoro attivi con i rispettivi responsabili di ricerca.

Infine ultimo ma non meno importante è stata la realizzazione del primo corso di astrofotografia on-line. In particolare è stato attivato in via sperimentale e gratuita il corso newbie, dedicato a tutti gli astrofotografi principianti. Al momento abbiamo a registro 18 iscritti e 2 persone hanno mostrato interesse nei futuri corsi intermediate ed advanced. Questi corsi sono stati la vera novità del 2014 di ASTROtrezzi e diverranno parte integrante del sito a partire dal 2015 (al momento si appoggiano su un sito esterno).

Cosa attenderci quindi per l’anno prossimo? Le attività da concludere sono ancora molte. Dalla guida all’Astrofotografia Digitale, al progetto constellation, alle parti prettamente Astronomiche/Astrofisiche del sito. Inoltre i corsi di astrofotografia on-line subiranno miglioramenti e modifiche suggerite dalla fase di test tuttora in atto. Seppur mai espressamente dichiarato, è intenzione di ASTROtrezzi redigere un catalogo Messier ripreso completamente dall’Italia con strumentazione amatoriale. Questo potrebbe essere spunto per una futura pubblicazione su ebook o libro fotografico. Anche i gadget di ASTROtrezzi quali foto, libri, tazze e magliette verranno prodotti su richiesta a guadagno zero da parte di Davide Trezzi, a partire dalla seconda metà del 2014.

Inoltre potenzieremo la presenza al forum Astrofili.org ed altri siti di fotografia, anche non strettamente astronomica. A partire dall’autunno 2014 partirà lo speciale “VERSO L’INFINITO”, una guida astrofilo-fotografica agli oggetti più belli del cielo analizzati mese dopo mese. In particolare, ogni mese verrà identificato un oggetto celeste e descritto nei minimi particolari dal punto di vista astronomico, astrofotografico e astrofisico. Lo speciale che durerà per tutto il 2015 servirà per avvicinare i meno esperti al cielo stellato.

Infine il giorno 21 giugno di ogni anno verrà inaugurato il progetto “disegna ASTROtrezzi”, in cui sarà possibile presentare per la durata di un mese il proprio restyling del logo di ASTROtrezzi. Se questo risulterà migliore di quello sino ad allora adottato, ASTROtrezzi premierà l’artista con una foto astronomica. Ovviamente in tal caso il logo verrà sostituito con quello del vincitore.

Di cose quindi ce ne sono ancora molte da fare e la vostra presenza qui su ASTROtrezzi farà si che potremmo rivederci l’anno prossimo per festeggiare il nostro terzo anno insieme. A PRESTO!




SN2014bc – 24/05/2014

Telescopio o obiettivo di acquisizione (Imaging telescope or lens): Ritchey-Chrétien GSO 203 mm f/8

Camera di acquisizione (Imaging camera): Canon EOS 500D (Rebel T1i) modificata Baader (Baader modded) [4.7 μm]

Montatura (Mount): SkyWatcher NEQ6

Telescopio o obiettivo di guida (Guiding telescope or lens): Rifrattore acromatico SkyWatcher 102mm f/5

Camera di guida (Guiding camera): Magzero MZ-5m B/W [5.2 μm]

Riduttore di focale (Focal reducer): non presente (not present)

Software (Software): IRIS + Adobe Photoshop CS3

Accessori (Accessories): non presente (not present)

Filtri (Filter):  non presente (not present)

Risoluzione (Resolution): 4752 x 3168 (originale/original), 4770 x 3178 (finale/final)

Data (Date): 24/05/2014

Luogo (Location): Passo Albiga – LC, Italia (Italy)

Pose (Frames): 2 x 600 sec at/a 800 ISO.

Calibrazione (Calibration): 4 x 600 sec dark, 34 bias, 34 flat

Fase lunare media (Average Moon phase): 14.8%

Campionamento (Pixel scale): 1071.87/1958.17 = 0.5474  arcsec/pixel

Focale equivalente (Equivalent focal lenght): 1771 mm

Note (note): Riportiamo un dettaglio della supernova SN2014bc / a detailed picture of the supernova is also reported.

SN2014bc in M106 - nella foto la supernova non è visibile.

SN2014bc - 24/05/2014




M71 (NGC 6838) – 24/05/2014

Telescopio o obiettivo di acquisizione (Imaging telescope or lens): Ritchey-Chrétien GSO 203 mm f/8

Camera di acquisizione (Imaging camera): Canon EOS 500D (Rebel T1i) modificata Baader (Baader modded) [4.7 μm]

Montatura (Mount): SkyWatcher NEQ6

Telescopio o obiettivo di guida (Guiding telescope or lens): Rifrattore acromatico SkyWatcher 102mm f/5

Camera di guida (Guiding camera): Magzero MZ-5m B/W [5.2 μm]

Riduttore di focale (Focal reducer): non presente (not present)

Software (Software): IRIS + Adobe Photoshop CS3

Accessori (Accessories): non presente (not present)

Filtri (Filter):  non presente (not present)

Risoluzione (Resolution): 4752 x 3168 (originale/original), 4770 x 3178 (finale/final)

Data (Date): 24/05/2014

Luogo (Location): Passo Albiga – LC, Italia (Italy)

Pose (Frames): 3 x 600 sec at/a 800 ISO.

Calibrazione (Calibration): 4 x 600 sec dark, 34 bias, 34 flat

Fase lunare media (Average Moon phase): 14.8%

Campionamento (Pixel scale): 1071.87/1958.17 = 0.5474  arcsec/pixel

Focale equivalente (Equivalent focal lenght): 1771 mm

Note (note): Riportiamo l’immagine originale ed un crop per ridurre il coma residuo dell’RC / We report the original picture a crop version in order to exclude the RC residual coma.

M71 (NGC 6838) - 24/05/2014 | immagine originale

M71 (NGC 6838) - 24/05/2014 (versione ruotata e tagliata)




Elaborare gli Ammassi Globulari

Riprendere gli ammassi globulari può sembrare facile. Seppur di dimensioni angolari piuttosto ridotte (si consigliano almeno 1000 mm di focale) questi oggetti risultano infatti quasi sempre luminosi permettendo così l’utilizzo di bassi ISO. Anche dalla città, con l’ausilio di filtri anti-inquinamento luminoso e camere CCD è possibile ottenere ottimi risultati. Eppure, come sempre, la vita non è tutta rose e fiori. Specialmente il neofita otterrà immagini apparentemente belle finché non confrontate con quelle riprese dagli osservatori astronomici o da astrofotografi professionisti.

Il “trucco”, se così si può chiamare, esiste e consiste in piccoli accorgimenti da applicare sia durante la ripresa che durante la post produzione. Vediamo quindi come fare operativamente sul campo, prendendo come esempio l’ammasso globulare M3 ripreso al fuoco diretto di un telescopio RC8.

COME RIPRENDERE UN AMMASSO GLOBULARE

A differenza di molti altri oggetti celesti dove il tempo di esposizione va scelto in funzione del rapporto segnale/rumore presente al momento dello scatto, nel caso degli ammassi globulari è il livello di saturazione del vostro sensore a giocare un ruolo fondamentale. Infatti è inutile riprendere le stelle più deboli di un ammasso globulare se il suo nucleo risulterà bruciato. A patto di non utilizzare una doppia esposizione, vediamo come ottenere operativamente una corretta esposizione.

Iniziamo quindi con l’affrontare il problema ovvero evitare di bruciare il nucleo dell’ammasso. In particolare ricordiamo che le stelle del nucleo sono bruciate perché il numero di fotoni che hanno raggiunto i pixel di quella regione sono “troppi” ed hanno mandato in saturazione il sensore. La saturazione può essere così eccessiva che alcuni “fotoelettroni” possono passare ai pixel vicini con conseguente perdita di dettaglio. Pertanto, esponendo per le deboli stelle periferiche si otterrà un nucleo omogeneamente bianco dove le stelle non sono praticamente distinguibili.

Per fare ciò dobbiamo ridurre al minimo il numero di stelle saturate. Come fare ad individuarle dato che tutte le stelle in foto risultano praticamente bianche? Dato che l’occhio non si comporta più come un buon metro di misura, utilizziamo strumenti più efficaci e scientifici: l’istogramma o ancor meglio la funzione Threshold di IRIS. Aprite quindi l’immagine appena scattata con IRIS come mostrato in Figura 1, risulterà più o meno scura a seconda della posizione dei cursori presenti nel tool Threshold.

Figura1: l'immagine di M3 così come aperta in IRIS e regolata premendo sul tasto Auto del tool Threshold.

A questo punto zoomate sul nucleo e muovete il primo dei due cursori del tool Threshold verso destra finché le stelle al centro risulteranno distinte e non sature (vedi Figura 2). Spostatevi quindi sulle stelle più luminose e leggete i valori di RGB che appaiono in basso a destra di IRIS. Nel caso in esame avremo valori massimi intorno ai 15400 ADU inferiori seppur di poco ai 16384 ADU massimi dati dalla dinamica della nostra fotocamera (14 bit, Canon EOS 500D).

Figura 2: il nucleo di M3 risolto in stelle.

Nel caso in cui il livello di luminosità delle stelle più luminose sia proprio 16384, allora state sovraesponendo e quindi dovrete diminuire il tempo di esposizione o gli ISO. Se sul computer che utilizzate per l’acquisizione delle immagini notturne non avete IRIS, allora provate con un qualsiasi programma di elaborazione delle immagini tirando l’istogramma verso destra. Se alcune stelle risulteranno sovraesposte allora vuol dire che il tempo di esposizione o gli ISO che state utilizzando sono troppo elevati. Se avrete seguito questo semplice consiglio allora al termine della nottata avrete dei light frame (delle immagini) esposte correttamente e pronte per l’elaborazione. Immagini di ammassi globulari sovraesposti non sono più recuperabili in post produzione.

COME ELABORARE UN AMMASSO GLOBULARE

Oltre all’acquisizione delle immagini astronomiche, anche l’elaborazione gioca un ruolo importante al fine di ottenere un’ottima astrofoto. Per gli ammassi globulari procedete come al solito calibrando i light frame con bias, dark e flat ed infine mediate i light frame calibrati. Questo potrete farlo con IRIS o con qualsiasi altro programma dedicato. Fatto questo potete operare in due modi differenti:

DYNAMIC STRETCHING

Con IRIS potete ottenere una bella immagine del vostro ammasso globulare correttamente esposto andando sul menù view → Dynamic stretching. Si aprirà una finestra. Cliccate su auto nel tool Threshold e successivamente spostate i due cursori, uno dopo l’altro, del tool Dynamic stretching finché non avrete stelle periferiche e del nucleo correttamente esposti (vedi Figura 3).

Figura3: l'ammasso globulare M3 ben bilanciato grazie al dynamic stratching.

LE CURVE DI PHOTOSHOP CS

Elaboriamo in IRIS o in qualsiasi programma dedicato l’ammasso globulare in modo che il nucleo sia correttamente esposto (stelle non saturate). Infatti anche se l’immagine è stata ripresa correttamente, con le curve o il tool Threshold è possibile “bruciare” l’immagine in fase di elaborazione! Apriamo quindi l’immagine ottenuta con Photoshop CS. Premete quindi la combinazione di tasti CTRL+M e si aprirà il tool “curve”. A questo punto, di solito, aumentate la luminosità delle stelle più deboli spostando la curva in alto. In questo modo otterrete un’immagine dell’ammasso globulare con il nucleo completamente “bruciato”, come mostrato in Figura 4.

Figura4: Come solitamente si tirano le curve per oggetti deepsky.

Qui proponiamo invece di andare per piccoli passi come riportato in Figura 5 dove la curva viene alzata solo leggermente. Il processo può (deve) essere ripetuto per un numero elevato di volte a volte persino alcune decine. In questo modo si eviterà di bruciare la parte centrale dell’ammasso aumentando la luminosità delle stelle periferiche.

Figura5: i micropassi da seguire per evitare di bruciare il nucleo dell'ammasso globulare.

L’utilizzo delle curve dipende molto dall’immagine di partenza. Se il risultato non vi convince provate a modificare quest’ultima finché non otterrete il meglio dalla vostra foto.

In questo articolo abbiamo descritto i passi da percorrere per ottenere buone immagini di ammassi globulari. Per maggiori informazioni o ulteriori metodi di ripresa/elaborazione di tali ammassi contattateci all’indirizzo davide@astrotrezzi.it . Di seguito un’immagine che mostra la differenza tra una buona foto di M3 ed una sovraesposta (in ripresa o elaborazione).




M3 (NGC 5272) – 04/05/2014

Telescopio o obiettivo di acquisizione (Imaging telescope or lens): Ritchey-Chrétien GSO 203 mm f/8

Camera di acquisizione (Imaging camera): Canon EOS 500D (Rebel T1i) modificata Baader (Baader modded) [4.7 μm]

Montatura (Mount): SkyWatcher NEQ6

Telescopio o obiettivo di guida (Guiding telescope or lens): Rifrattore acromatico SkyWatcher 102mm f/5

Camera di guida (Guiding camera): Magzero MZ-5m B/W [5.2 μm]

Riduttore di focale (Focal reducer): non presente (not present)

Software (Software): IRIS + Adobe Photoshop CS3

Accessori (Accessories): non presente (not present)

Filtri (Filter):  non presente (not present)

Risoluzione (Resolution): 4752 x 3168 (originale/original), 4362 x 2982 (finale/final)

Data (Date): 04/05/2014

Luogo (Location): Sormano – CO, Italia (Italy)

Pose (Frames): 9 x 600 sec at/a 400 ISO.

Calibrazione (Calibration): 3 x 600 sec dark, 40 bias, 35 flat

Fase lunare media (Average Moon phase): 29.4%

Campionamento (Pixel scale): 1071.87/1958.17 = 0.5474  arcsec/pixel

Focale equivalente (Equivalent focal lenght): 1771 mm

Note (note):

M3 (NGC 5272) - 04/05/2014




Saturno – 04/05/2014

Telescopio o obiettivo di acquisizione (Imaging telescope or lens): Ritchey-Chrétien GSO 203 mm f/8

Camera di acquisizione (Imaging camera): Imaging Source DBK31.AU03 colori / color [4.65 μm]

Montatura (Mount): SkyWatcher NEQ6

Telescopio o obiettivo di guida (Guiding telescope or lens): non presente (not present)

Camera di guida (Guiding camera): non presente (not present)

Riduttore di focale (Focal reducer): non presente (not present)

Software (Software): Registax5/6 + PixInsight + Adobe Photoshop CS3

Accessori (Accessories): Lente di Barlow TeleVue Powermate 5x (TeleVue Powermate 5x Barlow lens)

Filtri (Filter): Astronomik IR-cut

Risoluzione (Resolution): 1024 x 768

Data (Date): 04/05/2014

Luogo (Location): Sormano – CO, Italia (Italy)

Pose (Frames): somma di 200 frames

Calibrazione (Calibration): non presente (not present)

Fase lunare media (Average Moon phase): 29.4%

Campionamento (Pixel scale):

Focale equivalente (Equivalent focal lenght): 8611 mm

(clicca qui per scaricare l’immagine originale in formato TIFF – click here in order to download the TIFF file)

Saturno - 04/05/2014




filtri per camere a colori e OWB

I sensori a semiconduttore che costituiscono il cuore delle reflex digitali e dei CCD astronomici sono sensibili non solo alla parte “visibile” dello spettro elettromagnetico ma anche al vicino infrarosso ed ultravioletto (si legga ad esempio l’articolo Efficienza Quantica). Sebbene la radiazione UV venga quasi completamente riflessa (e quindi filtrata) dalle lenti che costituiscono i nostri obiettivi fotografici e telescopi, la radiazione infrarossa attraversa imperturbata il sistema ottico raggiungendo direttamente il sensore. Persino i filtri che costituiscono la matrice di Bayer (RGB) dei più comuni sensori a colore sono piuttosto trasparenti alla radiazione infrarossa.

Ma perché questa radiazione è così dannosa? Il problema è che il piano focale dell’infrarosso è diverso da quello della luce visibile generando così aloni intorno alle nostre immagini. Proprio per ridurre questa “fastidiosa” componente della radiazione nonché altri difetti quali l’effetto Moiré e l’aliasing, gran parte delle aziende produttrici di reflex digitali, tra le quali Canon e Nikon, hanno deciso di montare di fronte al sensore a semiconduttore una serie di filtri IR/UV cut (vedi articolo Filtri IR/UV-cut e luminanza).

In particolare Canon (così come Nikon) monta due filtri IR/UV cut denominati Low Pass Filter (LPF). Il filtro LPF#2, noto anche come hot mirror, è il primo che la luce incontra ed è quello che taglia gran parte della radiazione infrarossa. Il secondo LPF#1 si trova invece proprio di fronte al sensore e, oltre a filtrare la radiazione UV ed infrarossa rimanente, protegge quest’ultimo dalla polvere. Le curve di trasmissione dei filtri LPF per le fotocamere Canon EOS 40D e Nikon D700 sono mostrate in figura 1. Come si vede la risposta di questi filtri è molto simile per le due case produttrici di reflex digitali.

Figura 1: curva di trasmissione per i filtri LPF nel caso delle reflex digitali Canon EOS 40D e Nikon D700

Si può osservare da figura 1 come questi filtri, ed in particolare LPF#2 tagli in maniera sostanziale la radiazione a 656.3 nm (linea Hα), di fondamentale importanza in astrofotografia dato che proprio in quella lunghezza d’onda emettono gran parte delle nebulose.

Proprio per questo motivo, gran parte degli astrofotografi modificano la propria fotocamera digitale rimuovendo o sostituendo il filtro LPF#2 con uno in grado di far passare le lunghezze d’onda intorno ai 656.3 nm e allo stesso tempo bloccare la radiazione infrarossa. Nel primo caso di parla di rimozione del filtro mentre nel secondo caso modifica Baader dal nome di una delle maggiori aziende produttrice di filtri per l’astronomia.

In ogni caso la rimozione completa del filtro LPF#2 non porta ad un forte degradamento dell’immagine dato che il filtro LPF#1 taglia comunque gran parte della radiazione infrarossa.

Se si vuole invece avere il sensore “nudo” ridonandogli la capacità di vedere sia nel vicino UV che infrarosso, allora è necessario rimuovere anche il filtro LPF#1. Questo tipo di modifica si chiama modifica Full Spectrum. Anche in questo caso il filtro LPF#1 può essere rimosso o sostituito con un filtro trasparente al fine di proteggere il sensore dalla polvere.

Figura 2 mostra come la rimozione del filtro LPF#2 o la sostituzione con un filtro Baader siano praticamente equivalenti se il filtro LPF#1 viene mantenuto in sede. La soluzione ideale in termini astrofotografici si ottiene rimovendo il filtro LPF#1 e sostituendo il LPF#2 con un filtro Baader o alternativamente uno di luminanza (vedi articolo Filtri IR/UV-cut e luminanza). Ovviamente in questo caso perderemmo completamente la funzione di auto-focus e pulizia del sensore.

Figura 2: risposta spettrale per vari filtri. In particolare LPF1 corrisponde alla rimozione completa del filtro LPF#2. Si riportano come esempio i filtri IR/UV cut quali il filtro Baader e la luminanza L prodotta dalla ditta Astronomik. In nero è indicato anche la risposta spettrale (indicativa) di un sensore Canon generico privato dei filtri LPF#1 e LPF#2. In verde infine è indicata la linea Hα.

Modificando la risposta spettrale di una reflex digitale, si va ovviamente anche a modificare il bilanciamento del bianco. Nel caso in cui la vostra fotocamera sia stata modificata Baader o avete rimosso il filtro LPF#2, esiste la possibilità di montare il filtro OWB (original white balance) in grado di rigenerare la risposta spettrale originale con annesso bilanciamento del bianco.

Purtroppo in molti casi la modifica delle reflex digitali comporta la perdita dell’auto-focus. Informatevi bene quindi prima di modificare la vostra fotocamera.

Prima di concludere vogliamo far notare come una reflex modificata Baader o con rimozione del filtro (LPF#2) non richiede l’utilizzo di filtri IR/UV cut o luminanza aggiuntivi. Nel primo caso addirittura tali filtri porterebbero ad una riduzione della capacità della fotocamera di raccogliere la luce nel rosso / vicino infrarosso. L’utilizzo di filtri IR/UV cut è invece fondamentale quando si utilizzano webcam astronomiche per riprese planetarie (controllate che non siano già montati dalla ditta madre). Riportiamo a titolo d’esempio la risposta spettrale della camera a colori Imaging Source DBK 21AU618.AS (figura 3). Come si vede i filtri RGB che vanno a costituire la matrice di Bayer del sensore lasciano passare parte della radiazione infrarossa. Questa, come detto in precedenza, va ad inficiare la qualità ottica delle nostre immagini.

Figura 3: risposta spettrale dei vari elementi fotosensibili (RGB) per la camera Imaging Source DBK 21AU618.AS

Misure spettroscopiche relative a reflex Canon EOS originali, modificate Baader, rimozione filtro LPF#2 e Full Spectrum saranno realizzate prossimamente da ASTROtrezzi con reticolo di diffrazione. Chi fosse interessato a partecipare alla campagna di misura/analisi può scrivere a ricerca@astrotrezzi.it . Si ringrazia Marco Gargano per il supporto tecnico (Figura 1 – curve relative alla fotocamera digitale Nikon D700; tutti i diritti sono riservati – vietata la pubblicazione/distribuzione).




Filtri IR/UV cut e luminanza

Alla parola “filtro”, spesso si associa un colore. Questo perché la maggior parte dei filtri seleziona solo determinate lunghezze d’onda riflettendo le altre che quindi andranno ad assegnare uno specifico colore a ciascun filtro. Eppure esistono filtri trasparenti ovvero in grado di far passare tutta la radiazione visibile. Se a passare è però tutta la radiazione visibile, quale utilità hanno allora questi filtri?

Per comprenderlo dobbiamo ricordare che la luce visibile è solo una piccola parte di quella che prende il nome di radiazione elettromagnetica. In particolare un sensore a semiconduttore, come CCD e CMOS sono sensibili a radiazioni di lunghezza d’onda compresa tra circa 350 e 1100 nm. Ricordando che la luce visibile ai nostri occhi ha lunghezza d’onda compresa tra circa 390 e 700 nm, vuol dire che i sensori a semiconduttori osservano ben “oltre il visibile” ed in particolare nelle frequenze del vicino ultravioletto (UV, tra 350 e 390 nm) e del vicino infrarosso (IR, tra 700 e 1100 nm).

Se quindi ora vogliamo che un sensore a semiconduttore “veda” solo la radiazione visibile allora è necessario applicare a questo un filtro in grado di bloccare la radiazione UV e IR. Questo filtro è noto con il nome di luminanza (L), la cui curva di trasmissione la versione prodotta dalla ditta Astronomik è riportata in figura 1. Il filtro di luminanza può essere utilizzato o per aumentare la qualità ottica dell’immagine (nei rifrattori la radiazione IR e UV non viene focalizzata correttamente andando quindi ad inficiare la qualità ottica dello strumento) oppure nella composizione LRGB (per maggiori informazioni si legga l’articolo La tecnica LRGB).

Figura 1: (A) curva di trasmissione le filtro L Astronomik. Si può osservare come questo filtro copra tutto il range spaziato dai filtri RG e B della medesima marca (vedi articolo “Filtri colorati ed RGB”). (B) come appare il filtro L Astronomik da due pollici per telescopi astronomici.

Sul mercato esistono inoltre una notevole varietà di filtri del tutto simili a quelli di luminanza che prendono il nome di filtri IR-cut ovvero taglia infrarosso. In realtà, come per il filtro L, quasi gli IR-cut tagliano in realtà anche la componente ultravioletta della luce rilevabile da un sensore a semi-conduttore (talvolta infatti vengono riportati come filtri IR/UV cut). Esempi di curve di trasmissione per filtri IR-UV cut sono riportati in figura 2.

Figura 2: Curva di trasmissione per filtri IR/UV cut prodotti o venduti dalle aziende Astronomik, Baader Planetarium e Tecnosky. La regione dello spettro colorata in grigio rappresenta la regione del visibile. In nero tratteggiato è riportata la curva di trasmissione per il filtro L Astronomik. Si può osservare come tutti questi filtri coprano completamente lo spettro del visibile con code residue, più o meno lunghe, nel vicinissimo infrarosso e ultravioletto.

Quanto detto in questo articolo vale unicamente per camere CCD astronomiche monocromatiche. Reflex digitali e camere CCD a colori sono provviste ovviamente di un set di microfiltri RGB (matrice di Bayer) oltre che, talvolta, di uno o più filtri UV/IR cut montati di fronte al sensore. In questi casi l’utilizzo del filtro IR-cut o di Luminanza può risultare superfluo se non addirittura controproducente. Per maggiori dettagli si legga l’articolo “Filtri per camere a colori e OWB”.




Filtri colorati ed RGB

I filtri colorati sono utilizzati in astrofotografia sia per evidenziare zone specifiche dell’atmosfera o della superficie dei pianeti sia per ricostruire immagini a colori con camere monocromatiche attraverso la tecnica di composizione RGB (vedi post “Costruire un’immagine a colori). In particolare, nel secondo caso, sono stati sviluppati filtri specifici a banda passante, centrati rispettivamente nelle lunghezze d’onda del rosso (R), verde (G) e blu (B). Tali filtri possono essere montati di fronte ai sensori monocromatici delle camere CCD astronomiche oppure andare a formare, a gruppi di quattro, l’elemento fondamentale della matrice di Bayer di camere CCD a colori o reflex digitali. Esempio di curve di trasmissione per filtri R,G e B prodotti della ditta Astronomik sono riportati in figura 1.

Figura 1: (A) curva di trasmissione dei filtri RGB Astronomik. Si può osservare come l’unione dei tre filtri copra completamente lo spettro della luce visibile. (B) come appaiono i filtri RGB Astronomik da due pollici per telescopi astronomici.

Esistono poi numerosi filtri colorati per le osservazioni planetarie, generalmente identificati dal numero di Wratten (W). Quest’ultimo, derivando dalla fotografia tradizionale, non ha un riscontro scientifico vero e proprio assumendo per lo più un significato puramente estetico (colori caldi, colori freddi,…). Tra i principali filtri colorati utilizzati in astronomia ricordiamo: i filtri di colore rosso (W23A-W25) utili per l’osservazione diurna di Mercurio e Venere oltre ad enfatizzare dettagli superficiali di Marte o le bande di Giove.

Per la superficie di Saturno, nonché per ridurre il seeing nelle osservazioni lunari, consigliamo invece l’utilizzo del filtro arancio (W21) o dei filtri di colore giallo (W8-W12). Questi ultimi possono anche essere utilizzati per evidenziare i particolari delle atmosfere di Giove, Urano e Nettuno oltre alle tempeste su Marte. Sempre grazie a questi filtri è possibile migliorare l’osservazione della granulosità solare (in questo caso è necessario utilizzare contemporaneamente un filtro solare dedicato). Per la grande macchia rossa, i poli marziani e le nubi di Venere si consiglia invece un filtro verde (W56-W58). Particolari della superficie di Mercurio oltre a dettagli atmosferici di Venere, Marte, Giove e Saturno possono essere osservati invece grazie all’ausilio di filtri blu (W38A-W80A).  Analoghi a questi sono i filtri viola (in particolare il W47) che però permettono anche un aumento della qualità dell’osservazione degli anelli di Saturno.

Tutti i filtri colorati qui descritti possono essere utilizzati sia per l’osservazione visuale che per l’astrofotografia. Nel secondo caso, se ne consiglia l’utilizzo per riprese in bianco e nero dato che quelle a colori presenterebbero una forte dominante data dal filtro. A titolo d’esempio riportiamo in figura 2 le curve di trasmissione dei filtri colorati W15 (giallo), W25 (rosso), W58 (verde) e W80A (blu) venduti ad esempio in kit dalla ditta Orion.

Figura 2: (A) curva di trasmissione dei filtri colorati W15,W25,W58 e W80A. Per confronto, in tratteggiato, riportiamo la curva di trasmissione per i filtri RGB Astronomik. (B) come appare un filtro colorato W80A Meade da 1.25 pollici per telescopi astronomici.

I filtri colorati possono essere utilizzati anche per effettuare composizioni RGB anche se si consiglia vivamente l’utilizzo di filtri dedicati. Le curve di trasmissione di tutti i filtri colorati che obbediscono allo standard Wratten sono riportati nel documento “Transmission of Wratten filters” redatto da Allie C. Peed Jr. della Eastman Kodak Company. Alcune ditte come la Baader produce filtri colorati con standard differenti. In tal caso si rimanda al sito del produttore.

 




I filtri astronomici

L’utilizzo dei filtri in astrofotografia è fondamentale, specialmente se si utilizzano CCD astronomiche e/o si riprende da zone soggette ad elevato inquinamento luminoso. Lo scopo dei filtri ottici è quello di selezionare regioni più o meno ristrette dello spettro elettromagnetico di un determinato tipo di polarizzazione oppure semplicemente diminuire l’intensità della sorgente luminosa. Nel primo caso si possono utilizzare materiali in grado di assorbire (filtri ad assorbimento) o riflettere (filtri a riflessione tra cui i filtri interferenziali o dicroici) determinate lunghezze d’onda. Nel secondo caso invece vengono sfruttate le proprietà di determinati materiali in grado di selezionare una determinata polarizzazione della luce (polarizzatori) ed infine nel terzo caso si utilizzano materiali in grado di riflettere parzialmente tutte le lunghezze d’onda del visibile (filtri neutri). I filtri ad assorbimento e riflessione sono caratterizzati da una quantità detta curva di trasmissione che rappresenta la capacità del filtro di far passare una determinata lunghezza d’onda della radiazione luminosa. Queste curve possono o non possono essere normalizzate ad uno (o 100%). I filtri neutri invece sono identificati dalla capacità o meno del filtro di far passare la luce visibile noto come coefficiente di trasmissione. Coefficiente di trasmissione e curva di trasmissione sono concetti differenti anche se ovviamente legati tra loro. Il primo dice quanta luce passa dal filtro, la seconda invece indica quale è la probabilità per tale luce di possedere una determinata lunghezza d’onda una volta passata attraverso filtro. Il valore assoluto del logaritmo in base dieci del coefficiente di trasmissione è detta densità ottica, grandezza fondamentale per la scelta dei filtri neutri. I polarizzatori invece hanno densità ottica variabile a seconda dell’angolo tra la polarizzazione della luce incidente e quella del polarizzatore, detta legge di Malus.

In questo post e nei seguenti analizzeremo in dettaglio quasi tutti i filtri utilizzati in astrofotografia, ed in particolare:

Purtroppo non verranno presi in esame i filtri Hα per osservazioni solari a  cui sarà dedicata una sezione apposita.




M101 (NGC 5457) – 28/03/2014

Telescopio o obiettivo di acquisizione (Imaging telescope or lens): Rifrattore (refractor) Meade LXD 75 EMC  150 mm f/8

Camera di acquisizione (Imaging camera): CCD Atik 383L+ B/W [5.4 μm] @ -12.0°C

Montatura (Mount): SkyWatcher NEQ6

Telescopio o obiettivo di guida (Guiding telescope or lens): Rifrattore acromatico SkyWatcher 70mm f/7.1

Camera di guida (Guiding camera): Magzero MZ-5m B/W [5.2 μm]

Riduttore di focale (Focal reducer): non presenti (not present)

Software (Software): PixInsight 1.8 + Adobe Photoshop CS3

Accessori (Accessories): non presente (not present)

Filtri (Filter): 2” Astronomik CCD R, G, B

Risoluzione (Resolution): 3362 x 2504 (originale/original), 1485 x 1098 (finale/final)

Data (Date): 28/03/2014

Luogo (Location): Sormano – CO, Italia (Italy)

Pose (Frames): 5 x 780 sec bin 2×2 R, 6 x 780 sec bin 2×2 G, 6 x 780 sec bin 2×2 B

Calibrazione (Calibration): 6 x 780 sec bin 2×2 dark, 56 bias, 50 flat for each channel / RGB

Fase lunare media (Average Moon phase): 4.9%

Campionamento (Pixel scale):  1.8627 arcsec/pixel

Focale equivalente (Equivalent focal lenght): 1219 mm

Note (note): Composizione RGB

M101 (NGC 5457) - 28/03/2014




M109 (NGC 3992) – 24/03/2014

Telescopio o obiettivo di acquisizione (Imaging telescope or lens): Newton SkyWatcher BlackDiamond 200 mm f/4

Camera di acquisizione (Imaging camera): CCD Atik 383L+ B/W [5.4 μm] @ -12.0°C

Montatura (Mount): SkyWatcher NEQ6

Telescopio o obiettivo di guida (Guiding telescope or lens): Rifrattore acromatico SkyWatcher 102mm f/5

Camera di guida (Guiding camera): Magzero MZ-5m B/W [5.2 μm]

Riduttore di focale (Focal reducer): non presenti (not present)

Software (Software): PixInsight 1.8 + Adobe Photoshop CS3

Accessori (Accessories): non presente (not present)

Filtri (Filter): 2” Astronomik CCD R, G, B

Risoluzione (Resolution): 3362 x 2504 (originale/original), 3228 x 2370 (finale/final)

Data (Date): 24/03/2014

Luogo (Location): Briosco – MB, Italia (Italy)

Pose (Frames): 4 x 720 sec bin 1×1 R (24/03/2014), 3 x  720 sec bin 1×1 G (24/03/2014), 4 x  720 sec bin 1×1 B (24/03/2014)

Calibrazione (Calibration): 10 x 900 sec bin 2×2 dark (25/03/2014), 39 bias (24/03/2014), 15 flat  (24/03/2014) RGB

Fase lunare media (Average Moon phase): 40.1% (24/03/2014)

Campionamento (Pixel scale):  1.38568 arcsec/pixel

Focale equivalente (Equivalent focal lenght): 800 mm

Note (note): Composizione RGB / RGB composition.

M109 (NGC 3992) - 24/03/2014




M109 (NGC 3992) – 06/03/2014

Telescopio o obiettivo di acquisizione (Imaging telescope or lens): Ritchey-Chrétien GSO 203 mm f/8

Camera di acquisizione (Imaging camera): CCD Atik 383L+ B/W [5.4 μm] @ -12.0°C

Montatura (Mount): SkyWatcher AZ-EQ6

Telescopio o obiettivo di guida (Guiding telescope or lens): Rifrattore acromatico SkyWatcher 102mm f/5

Camera di guida (Guiding camera): Magzero MZ-5m B/W [5.2 μm]

Riduttore di focale (Focal reducer): non presenti (not present)

Software (Software): PixInsight 1.8 + Adobe Photoshop CS3

Accessori (Accessories): non presente (not present)

Filtri (Filter): 2” Astronomik CCD L, R, G, B

Risoluzione (Resolution): 3362 x 2504 (originale/original), 3261 x 2500 (finale/final)

Data (Date): 06/03/2014

Luogo (Location): Briosco – MB, Italia (Italy)

Pose (Frames): 7 x 900 sec bin 1×1 L (06/03/2014), 4 x 900 sec bin 2×2 R (06/03/2014), 3 x 900 sec bin 2×2 G (06/03/2014), 4 x 900 sec bin 2×2 B (06/03/2014)

Calibrazione (Calibration): 10 x 900 sec bin 1×1 dark (08/03/2014), 59 bias (06/03/2014), 26 flat (06/03/2014) L, 10 x 900 sec bin 2×2 dark (08/03/2014), 73 bias (06/03/2014), 31 flat (06/03/2014) R, 10 x 900 sec bin 2×2 dark (08/03/2014), 73 bias (06/03/2014), 31 flat (06/03/2014) G, 10 x 900 sec bin 2×2 dark (08/03/2014), 73 bias (06/03/2014), 31 flat (06/03/2014) B

Fase lunare media (Average Moon phase): 33.4% (06/03/2014)

Campionamento (Pixel scale):  0.693058 arcsec/pixel

Focale equivalente (Equivalent focal lenght): 1624 mm

Note (note): Composizione LRGB, l’immagine RGB è costruito sommando l’immagine del 24/03/2014 – LRGB composition, 24/03/2014 picture has been added to RGB image.

M109 (NGC 3992) - 06/03/2014




NGC 2246 – 19/03/2014

Telescopio o obiettivo di acquisizione (Imaging telescope or lens): Canon EF 100-400mm f/5.6 L IS USM a/at 300 mm

Camera di acquisizione (Imaging camera): CCD Atik 383L+ B/W [5.4 μm]

Montatura (Mount): SkyWatcher NEQ6

Telescopio o obiettivo di guida (Guiding telescope or lens): Rifrattore (reftactor) SkyWatcher 70mm f/7

Camera di guida (Guiding camera): Magzero MZ-5m B/W [5.2 μm]

Riduttore di focale (Focal reducer): non presente (not present)

Software (Software): PixInsight + Adobe Photoshop CS3

Accessori (Accessories): non presenti (not present)

Filtri (Filter): Astronomik CCD Hα 13nm, Astronomik CCD SII 13nm, Astronomik CCD OIII 12nm

Risoluzione (Resolution): 1681 x 1268 (originale/original), 1681 x 1193 (finale/final)

Data (Date): 19/03/2014

Luogo (Location): Sormano – CO, Italia (Italy)

Pose (Frames): 3 x 900 sec bin 2×2 Hα, 4 x 1020 sec bin 2×2 SII, 3 x 1020 sec bin 2×2 OIII,

Calibrazione (Calibration): 5 x 900 sec bin 2×2 dark Hα, 5 x 1020 sec bin 2×2 dark SII, 5 x 1020 sec bin 2×2 dark OIII, 50 bias, no flat.

Fase lunare media (Average Moon phase): 89.0%

Note (note): RGB (SIIHαOIII)

NGC2246 - 19/03/2014




Luna – 13/03/2014

Telescopio o obiettivo di acquisizione (Imaging telescope or lens): Rifrattore (refractor) Meade LXD 75 EMC  150 mm f/8

Camera di acquisizione (Imaging camera): CCD Atik 314L+ B/W [6.45 μm]

Montatura (Mount): SkyWatcher NEQ6

Telescopio o obiettivo di guida (Guiding telescope or lens): non presente (not present)

Camera di guida (Guiding camera): non presente (not present)

Riduttore di focale (Focal reducer): non presente (not present)

Software (Software): PixInsight 1.8 + Adobe Photoshop CS3

Accessori (Accessories): Lente di Barlow TS APO 2.5x (TS 2.5x APO Barlow lens)

Filtri (Filter): IR-cut

Risoluzione (Resolution): 1392 x 1040 [Atik 314L+]

Data (Date): 13/03/2014

Luogo (Location): Briosco – MB, Italia (Italy)

Pose (Frames): mosaico di 7 fotogrammi ciascuno somma di 50 frames da 0.001 s a -6°C (7 frame mosaic each one composition of 50 frames taken at -6 °C, exposure time 0.001 s)

Calibrazione (Calibration): non presente (not present)

Fase lunare media (Average Moon phase): 92.6%

Focale equivalente (Equivalent focal lenght): 3060 mm

Luna - 13/03/2014