1

Nova Del 2013 – 17/08/2013

Telescopio o obiettivo di acquisizione (Imaging telescope or lens): Newton SkyWatcher BlackDiamond 150 mm f/5

Camera di acquisizione (Imaging camera): CCD Atik 383L+ B/W [5.4 μm]

Montatura (Mount): SkyWatcher NEQ6

Telescopio o obiettivo di guida (Guiding telescope or lens): Rifrattore ED (ED reftactor) Tecnosky Carbon Fiber 80mm f/7

Camera di guida (Guiding camera): Magzero MZ-5m B/W [5.2 μm]

Riduttore di focale (Focal reducer): correttore di coma (coma corrector)

Software (Software): IRIS + Adobe Photoshop CS3/CS6

Accessori (Accessories): non presenti (not present)

Filtri (Filter):  Astronomik CCD LRGB 2”

Risoluzione (Resolution): 3362 x 2537 (originale/original), 2524 x 1810 (finale/final)

Data (Date): 17/08/2013

Luogo (Location): Briosco – MB, Italia (Italy)

Pose (Frames): 6 x 300 sec bin 1×1 L, 1 x 300 sec bin 2×2 R, 1 x 300 sec bin 2×2 G, 1 x 300 sec bin 2×2 B,

Calibrazione (Calibration): 8 x 300 sec dark bin 1×1, 2 x 300 sec dark bin 2×2, 58 bias bin 1×1, 128 bias bin 2×2, flat sintetico (synthetic flat)

Fase lunare media (Average Moon phase): 85.8%

Campionamento (Pixel scale): 1.458 arcsec/pixel

Focale equivalente (Equivalent focal lenght): 764 mm

Note (note): Composizione LRGB. Nell’immagine è visibile anche la nebulosa planetaria NGC 6905 / LRGB composition. In the picture is also visible the planetary nebula NGC 6905.

Nova Del 2013 - 17/08/2013




Nova Del 2013 – 15/08/2013

Telescopio o obiettivo di acquisizione (Imaging telescope or lens): Canon EF-S 55-250mm IS II f/4.0 utilizzato a (used at) 79 mm f/4.5

Camera di acquisizione (Imaging camera): Canon EOS 500D (Rebel T1i) [4.7 μm]

Montatura (Mount): iOpron StarTracker

Telescopio o obiettivo di guida (Guiding telescope or lens): non presente (not present)

Camera di guida (Guiding camera): non presente (not present)

Riduttore di focale (Focal reducer): non presente (not present)

Software (Software): IRIS + Adobe Photoshop CS3/CS6

Accessori (Accessories): non presente (not present)

Filtri (Filter):  non presente (not present)

Risoluzione (Resolution): 3888 x 2592 (originale/original), 4576 x 2961 (finale/final)

Data (Date): 15/08/2013

Luogo (Location): Briosco, Italia (Italy)

Pose (Frames): 34 x 100 sec at/a 200 ISO

Calibrazione (Calibration): 16 x 100 sec dark, 20 bias, 20 flat.

Fase lunare media (Average Moon phase): 65.5%

 

Note (note):

Nova Del 2013 - 15/08/2013

La stessa immagine con i riferimenti / The same picture with labels.:

Nova Del 2013 - 15/08/2013




Via Lattea – 04/08/2013

Telescopio o obiettivo di acquisizione (Imaging telescope or lens): Canon EF-S 18-55mm f/3.5 utilizzato a/at 18mm f/3.5

Camera di acquisizione (Imaging camera): Canon EOS 500D (Rebel T1i) [4.7 μm]

Montatura (Mount): iOpron StarTracker

Telescopio o obiettivo di guida (Guiding telescope or lens): non presente (not present)

Camera di guida (Guiding camera): non presente (not present)

Riduttore di focale (Focal reducer): non presente (not present)

Software (Software): IRIS + Adobe Photoshop CS3

Accessori (Accessories): non presente (not present)

Filtri (Filter):  non presente (not present)

Risoluzione (Resolution): 3888 x 2592 (originale/original), 7841 x 2725 (finale/final)

Data (Date): 04/08/2013

Luogo (Location): Roque de los Muchachos – La Palma, Spagna (Spain)

Pose (Frames): 35 x 100 sec a/at 800 ISO (Regione del Sagittario / Sagittarium Area – 04/08/2013) + 17 x 100 sec a/at 800 ISO (Regione dello Scudo / Scutum Area – 04/08/2013) + 15 x 100 sec a/at 800 ISO (Regione del Cigno / Cygnus Area – 04/08/2013) + 1 x 179 sec a/at 400 ISO (Paesaggio / Landscape – 01/08/2013)

Calibrazione (Calibration): 32 x 100 sec dark (04/08/2013), 37 bias (04/08/2013), 103 flat (14/08/2013).

Fase lunare media (Average Moon phase): 3.7%

Campionamento (Pixel scale):  circa/about 51.38 arcsec/pixel

Focale equivalente (Equivalent focal lenght): 27 mm

Note (note): 19 mm

Via Lattea - 04/08/2013





La regione di M7 – 01/08/2013

Telescopio o obiettivo di acquisizione (Imaging telescope or lens): Canon EF 100 mm f/2.8 L IS USM Macro a/at f/2.8

Camera di acquisizione (Imaging camera): Canon EOS 500D (Rebel T1i) [4.7 μm]

Montatura (Mount): iOpron StarTracker

Telescopio o obiettivo di guida (Guiding telescope or lens): non presente (not present)

Camera di guida (Guiding camera): non presente (not present)

Riduttore di focale (Focal reducer): non presente (not present)

Software (Software): IRIS + Adobe Photoshop CS3/CS6

Accessori (Accessories): non presente (not present)

Filtri (Filter):  non presente (not present)

Risoluzione (Resolution): 3888 x 2592 (originale/original), 4770 x 3178 (finale/final)

Data (Date): 01/08/2013

Luogo (Location): Roque de los Muchachos – La Palma, Spagna (Spain)

Pose (Frames): 29 x 100 sec at/a 800 ISO

Calibrazione (Calibration): 13 x 100 sec dark (01/08/2013), 63 bias (01/08/2013), 110 flat (14/08/2013).

Fase lunare media (Average Moon phase): 21.3%

Campionamento (Pixel scale):  circa/about 9.651 arcsec/pixel

Focale equivalente (Equivalent focal lenght): 100 mm

Note (note):

 

La regione di M7 - 01/08/2013




Nube di Rho Ophiuchi – 01/08/2013

Telescopio o obiettivo di acquisizione (Imaging telescope or lens): Canon EF 100 mm f/2.8 L IS USM Macro a/at f/2.8

Camera di acquisizione (Imaging camera): Canon EOS 500D (Rebel T1i) [4.7 μm]

Montatura (Mount): iOpron StarTracker

Telescopio o obiettivo di guida (Guiding telescope or lens): non presente (not present)

Camera di guida (Guiding camera): non presente (not present)

Riduttore di focale (Focal reducer): non presente (not present)

Software (Software): IRIS + Adobe Photoshop CS3/CS6

Accessori (Accessories): non presente (not present)

Filtri (Filter):  non presente (not present)

Risoluzione (Resolution): 3888 x 2592 (originale/original), 4770 x 3178 (finale/final)

Data (Date): 01/08/2013

Luogo (Location): Roque de los Muchachos – La Palma, Spagna (Spain)

Pose (Frames): 30 x 100 sec at/a 800 ISO

Calibrazione (Calibration): 13 x 100 sec dark (01/08/2013), 63 bias (01/08/2013), 110 flat (14/08/2013).

Fase lunare media (Average Moon phase): 21.3%

Campionamento (Pixel scale):  circa/about 9.651 arcsec/pixel

Focale equivalente (Equivalent focal lenght): 100 mm

Note (note):

Nube di Rho Ophiuchi - 01/08/2013




NGC 6888 – 30/06.25/07/2013

Telescopio o obiettivo di acquisizione (Imaging telescope or lens): Rifrattore ED (ED reftactor) Tecnosky Carbon Fiber 80mm f/7

Camera di acquisizione (Imaging camera): CCD Atik 383L+ B/W [5.4 μm]

Montatura (Mount): SkyWatcher NEQ6

Telescopio o obiettivo di guida (Guiding telescope or lens): Newton SkyWatcher BlackDiamond 150 mm f/5

Camera di guida (Guiding camera): Magzero MZ-5m B/W [5.2 μm]

Riduttore di focale (Focal reducer): riduttore/spianatore 0.8x (0.8x reducer/field flattener)

Software (Software): IRIS + Adobe Photoshop CS3

Accessori (Accessories): non presenti (not present)

Filtri (Filter):  Astronomik CCD Hα 13nm, Astronomik CCD OIII 12nm

Risoluzione (Resolution): 3362 x 2537 (originale/original), 3295 x 2473 (finale/final)

Data (Date): 30/06/2013 – 25/07/2013

Luogo (Location): Briosco – MB, Italia (Italy)

Pose (Frames): 5 x 1200 sec bin 1×1 Hα (30/06/2013), 4 x 1200 sec bin 1×1 OIII (25/07/2013)

Calibrazione (Calibration): 5 x 1200 sec dark (01/07/2013), bias sintetico (synthetic bias), 50 flat x  Hα (30/06/2013), 30 flat x OIII (25/07/2013)

Fase lunare media (Average Moon phase): 42.7% (30/06/2013) – 86.2% (25/07/2013)

Campionamento (Pixel scale): 2.496 arcsec/pixel

Focale equivalente (Equivalent focal lenght): 446 mm

Note (note): Il canale verde è stato ricostriuito sinteticamente (green channel is synthetic)

NGC 6888 - 30/06.25/07/2013




IC1318 e dintorni – 27/07/2013

Telescopio o obiettivo di acquisizione (Imaging telescope or lens): Canon EF-S 55-250mm IS II f/4.0 utilizzato a (used at) 208 mm f/5.6

Camera di acquisizione (Imaging camera): Canon EOS 500D (Rebel T1i) [4.7 μm]

Montatura (Mount): iOpron StarTracker

Telescopio o obiettivo di guida (Guiding telescope or lens): non presente (not present)

Camera di guida (Guiding camera): non presente (not present)

Riduttore di focale (Focal reducer): non presente (not present)

Software (Software): IRIS + Adobe Photoshop CS3/CS6

Accessori (Accessories): non presente (not present)

Filtri (Filter):  non presente (not present)

Risoluzione (Resolution): 3888 x 2592 (originale/original), 4770 x 3178 (finale/final)

Data (Date): 27/07/2013

Luogo (Location): Passo del Bernina – GR, Svizzera (Switzerland)

Pose (Frames): 7 x 240 sec at/a 800 ISO

Calibrazione (Calibration): 3 x 180 sec dark (27/07/2013), 12 bias (27/07/2013), 17 flat (29/07/2013).

Fase lunare media (Average Moon phase): 68.4%

Campionamento (Pixel scale):  circa/about 4.6 arcsec/pixel

Focale equivalente (Equivalent focal lenght): 207 mm

Note (note):

IC 1318 e dintorni - 27/07/2013




Vedere i pianeti ad occhio nudo

Se non fosse per le fasi lunari e le strutture variabili del nostro Sole come le macchie o le protuberanze, l’Universo può apparire statico, dato che i tempi “evolutivi” del Cosmo sono ben più lunghi della vita di un essere umano. Il lettore potrebbe quindi pensare che dopo anni di osservazioni e di riprese fotografiche la vita dell’astrofilo sia destinata a diventare noiosa e poco stimolante. Eppure non tutte le “stelle” del cielo rimangono “fisse” nel corso dei mesi e degli anni; alcune si muovono percorrendo nel cielo lo stesso tragitto compiuto dal Sole e dalla Luna e noto come eclittica. Tali stelle presero in passato il nome di pianeti ovvero stelle erranti. Ecco quindi che i pianeti appaiono sotto tutti gli effetti come stelle e non solo: alcuni di essi rappresentano le “stelle” più luminose del cielo e quindi facilmente visibili ad occhio nudo anche da centri cittadini. Il movimento dei pianeti rispetto alle stelle fisse non è così veloce come uno potrebbe aspettarsi: nell’arco di un’intera notte è infatti difficile avvertirne lo spostamento. Tale moto diviene evidente solo con il passare dei giorni o dei mesi, specialmente se il pianeta si trova basso sull’orizzonte.
I pianeti più luminosi visibili da Terra sono Venere di colore bianco e Giove di colore giallo. A seguire Marte, di colore rosso mattone, che per motivi orbitali varia di molto la sua luminosità passando dall’essere una tra le stelle più luminose del cielo ad una stella di media luminosità. Mercurio, di colore arancione, è piuttosto luminoso ma essendo sempre vicino al Sole è difficile da distinguere tra le luci di alba e tramonto. Infine via via più deboli troviamo Saturno e Urano. Il primo di colore giallo ed il secondo, al limite della visibilità ad occhio nudo, di colore azzurro. Per osservare l’ultimo pianeta del Sistema Solare è invece necessario utilizzare un binocolo di medie dimensioni o un piccolo telescopio.
Tutti i pianeti ruotano intorno al Sole muovendosi su un piano che visto in sezione rappresenta l’eclittica. Rispetto all’orbita descritta dal nostro pianeta, è possibile distinguere tra pianeti interni ed esterni. I primi si trovano sempre tra noi ed il Sole e pertanto è impossibile osservarli nel cuore della notte. Questi inoltre potranno apparire in fase o transitare sul disco solare. I pianeti esterni d’altronde potranno essere visibili anche nel cuore della notte. Il punto di massima visibilità e di minima distanza dal nostro pianeta è quella in cui il pianeta esterno si trova allineato con la Terra ed il Sole. Tale condizione prende il nome di opposizione. I pianeti esterni non presenteranno quindi una fase visibile, mantenendosi sempre prossima al 100%, e soprattutto non potranno mai transitare sul disco solare. Ricordiamo infine che i pianeti interni sono Mercurio e Venere, mentre quelli esterni sono Marte, Giove, Saturno, Urano e Nettuno.

Come appare Saturno in un telescopio amatoriale.

I pianeti però non sono gli unici astri “erranti”. Esistono infatti corpi minori, e quindi meno luminosi, che si spostano tra le stelle fisse. Uno di questo venne addirittura ad occupare la posizione di pianeta fino al 24 Agosto del 2006: Plutone. Stiamo parlando di pianeti nani e asteroidi. I primi sono corpi celesti simili ai pianeti ma di piccole dimensioni, mentre i secondi sono corpi rocciosi di piccole dimensioni con orbita compresa tra quella di Marte e Giove. I pianeti nani classificati sino ad oggi sono cinque: Cerere, Plutone, Haumea, Makemake ed Eris. Gli asteroidi sono invece migliaia e spesso più che con un nome vengono identificati con una sigla.
Oggetti tanto misteriosi quanto affascinanti sono infine le comete, palle di neve sporca che per instabilità gravitazionali vengono a modificare la propria orbita “cadendo” verso le regioni interne del Sistema Solare. Quando si avvicinano al Sole ecco quindi che il ghiaccio sublima dando luogo a quella che è l’atmosfera cometaria: la chioma. Gas e polveri vengono così emessi nello spazio e conseguentemente spazzati via dal vento solare formando quella che è la coda cometaria. Ricordiamo che il 2013 sarà ricordato per gli abitanti dell’emisfero boreale come l’anno delle comete dato che ben tre comete luminose varcheranno i nostri cieli: la cometa PAN-STARRS, LEMMON ed ISON.  Quando il nostro pianeta, durante il suo moto di rivoluzione intorno al Sole, attraversa i detriti lasciati nello spazio dalle comete abbiamo il manifestarsi del fenomeno degli sciami meteorici. Quindi le meteore o “stelle cadenti” non sono altro che detriti di origine cosmica che, cadendo verso Terra, si “incendiano” emettendo luce. Se una meteora cade sino a sfiorare la superficie terrestre si parla di bolidi. I bolidi possono essere udibili anche a grandi distanti o persino creare danni al suolo. Quando una meteora infine si impatta sulla Terra viene denominata meteorite.
Concludiamo infine ricordando che oltre ai corpi celesti abbiamo i satelliti artificiali e la stazione spaziale internazionale (ISS) che appaiono in cielo come stelle luminose in moto tra le stelle fisse. Queste possono poi scomparire magicamente nel nulla quando passano attraverso il cono d’ombra generato dalla Terra. Alcuni satelliti invece possono ruotare su se stessi velocemente riflettendo come dei flash la luce del Sole. Tali flash che appaiono ad occhio nudo come dei bolidi sono chiamati iridium flash.
Non siete soddisfatti della vastità di oggetti da osservare e riprendere con le vostre fotocamere digitali che vi offre l’Universo? Allora ve ne aggiungiamo altri. Infatti, oltre ai corpi celesti “erranti” esistono altri che variano la loro luminosità nel tempo. Esempi sono le stelle variabiliche cambiano la loro luminosità passando dall’essere visibili ad occhio nudo ad essere faticosamente distinguibili con un binocolo. Il motivo di tale variazione di luminosità dipende dalla natura della stella (sistema doppio che si eclissa reciprocamente, stelle instabile, …).

Esempio di supernova esplosa nella galassia M65

Altri esempi sono le novae, ovvero stelle che per un certo periodo della loro vita vanno incontro a fenomeni esplosivi violenti in grado di aumentarne vertiginosamente la luminosità. Ultimo fenomeno transitorio è l’esplosione di supernova. In questo caso la luminosità della stella, giunta ormai al termine della propria vita, aumenta vertiginosamente, diventando così il corpo più luminoso dell’intera galassia che la ospita. L’esplosione di supernova è un fenomeno raro all’interno di una stessa galassia, ma considerando la quantità enorme di galassie alla portata dei telescopi amatoriali, scopriamo che ogni mese è possibile riprenderne almeno una (vedi Figura). Ben diverso è osservare una supernova all’interno della Via Lattea. L’ultima ad essere esplosa è la nota “stella di Keplero”, osservata nell’ormai lontano 9 Ottobre del 1604. Alcune delle nebulose che oggi osserviamo nel cielo sono resti di quelle imponenti esplosioni.




Vita e Morte delle Stelle

Seppur in quantità minore rispetto al Sole, anche la luce lunare viene diffusa dalla nostra atmosfera donando al cielo notturno una colorazione bluastra. Purtroppo a seguito dell’inquinamento luminoso questo fenomeno non è più osservabile da cieli urbani e suburbani dove la volta celeste appare perennemente di colore giallo-arancione.

Una stella risulta visibile a occhio nudo quando è distinguibile dal fondo cielo. Questo ovviamente nei limiti imposti dalla natura stessa dell’occhio umano. Quindi se il cielo aumenta la sua luminosità discostandosi dal colore nero, se ne deduce che il numero di stelle visibili ad occhio nudo tende mano a mano a diminuire. Il caso limite è ovviamente il cielo diurno dove la diffusione della luce solare cela all’occhio umano la visione di tutte le stelle presenti. Se pertanto vogliamo osservare un cielo ricco di stelle dobbiamo cercare un cielo buio che si traduce in basso inquinamento luminoso e assenza di Luna in cielo. Questo spiega perché gli astrofili osservano gli oggetti celesti prevalentemente in condizioni di Luna Nuova e perché gli Osservatori Astronomici aprono le loro porte al pubblico in Luna Piena.
È giunto quindi il momento di fare il grande balzo. Scegliete quindi il weekend più vicino alla Luna Nuova, prendete la vostra automobile e correte il più lontano dai centri cittadini. Dato che a diffondere la luce sono principalmente le particelle di acqua presenti in atmosfera, cercate un posto asciutto come i valichi alpini o le cime di colli. A questo punto, aspettate due ore circa dopo il tramonto in modo da dare il tempo al Sole di andare sufficientemente sotto l’orizzonte con la sua luce accecante e alzate gli occhi al cielo: ciò che vedrete sarà un’esperienza unica e indimenticabile. Le stelle in cielo saranno tantissime e le più luminose sembreranno cadervi in testa. Solo dopo una mezz’ora riuscirete ad orientarvi e a distinguere quelle poche stelle che avete imparato a riconoscere dai cieli inquinati di casa vostra.
Ora che avete cominciato a ritrovare le vostre stelle di guida, siete pronti per cominciare a navigare tra le stelle che inondano la volta celeste. Ma prima di fare ciò osservate con attenzione le stelle più luminose. Non sono tutte dei puntini bianchi. Alcune di esse avranno una colorazione più giallognola, alcune rosso mattone, altre azzurro chiaro. Le stelle assumono infatti colorazioni differenti a seconda della loro natura e del loro stato evolutivo. Purtroppo anche l’esperienza di osservare i colori delle stelle sta diventando un lontano ricordo per gli astrofili che vivono sotto cieli urbani o suburbani.
Quei puntini luminosi (ora potremmo dire anche colorati) che chiamiamo abitualmente stelle sono in realtà sfere di gas del tutto simili al nostro Sole, poste a distanze enormi da noi. Le dimensioni di questi “Soli” variano moltissimo passando da circa 20 km di diametro a 2600 volte il diametro del nostro Sole.
Ancora una volta le dimensioni di una stella dipendono dalla loro natura e dal loro stato evolutivo. Infatti, come gli esseri viventi, anche le stelle nascono, crescono e muoiono. Volendo semplificare e generalizzare l’evoluzione stellare potremmo affermare che, da una nube di gas primordiale, condensarono in un passato più o meno lontano una o più stelle, così come le gocce di pioggia condensano dalle nuvole. La forza di gravità responsabile di tale condensazione ha permesso alle regioni centrali della stella neonata di raggiungere temperature elevatissime in grado di innescare reazioni di fusione termonucleari. Saranno proprio queste ultime a permettere alla stella di non collassare ulteriormente e di brillare per miliardi di anni. In questa condizioni di stabilità si trova ad esempio ora il nostro Sole. Dopo miliardi di anni però il “combustibile nucleare” presente nel cuore della stella tende ad esaurirsi. Ecco quindi che con il venire meno delle reazioni di fusione termonucleare la stella ritorna in una fase di instabilità e a seconda della sua massa può procedere attraverso vie più o meno tormentose che la porteranno a liberarsi di quasi tutto il gas che la compone attraverso processi più o meno esplosivi. Il gas così liberato nello spazio prende il nome di nebulosa. Proprio in queste nebulose potranno successivamente nascere nuove stelle. Quando la stella libera il proprio gas in maniera non violenta, allora la nebulosa assume una forma sostanzialmente sferica e si parla di nebulose planetarie (vedi Figura).

Nebulosa planetaria nella costellazione della Volpetta

Il nostro Sole finirà la propria esistenza generando una nebulosa planetaria. Il nome “planetario” deriva dal fatto che in passato, quando la qualità ottica dei telescopi era piuttosto bassa, queste nebulose venivano confuse con dischi planetari.
Seppur deboli rispetto alle stelle, le nebulose sono visibili sia ad occhio nudo che ovviamente attraverso binocoli o telescopi. Come detto in precedenza, da una nube primordiale possono nascere più stelle contemporaneamente che pertanto appariranno in cielo in forma di gruppi, per poi dissolversi nel corso di miliardi di anni. Tali gruppi di stelle, alcuni dei quali visibili facilmente ad occhio nudo, prendono il nome di ammassi aperti.
La distanza tra una stella e l’altra dell’ammasso è però molto grande tanto da ritenere le stelle come sistemi indipendenti. Altre volte però due o più stelle possono trovarsi così vicine da cominciare a ruotare le une intorno alle altre. In questo caso si parla di sistemi multipli a possono essere osservate con piccoli telescopi. Quando le stelle del sistema sono solo due si parla di stelle doppie. Ovviamente due stelle molto vicine in cielo non è detto che siano legate fisicamente. Infatti potrebbe essere solo un allineamento prospettico tra stelle molto lontane tra loro. In questo caso si parla di stelle doppie prospettiche. Una stella doppia prospettica assai nota è la coppia Alcor e Mizar che costituisce una delle sette stelle dell’Orsa Maggiore.
Ma le stelle sono distribuite uniformemente nella volta celeste? Se la osservate in primavera la risposta sembrerebbe essere si, ma osservando il cielo notturno in tutte le altre stagioni osserverete una striscia lattiginosa attraversare il cielo. Proprio in questa striscia troverete il maggior numero di nebulose ed ammassi aperti visibili ad occhio nudo. Si chiama Via Lattea è rappresenta una vera e propria “nube” di stelle. Se infatti prendete un binocolo e percorrete la Via Lattea scoprirete che quella macchia lattiginosa non è altro che una distesa quasi infinita di stelle. In realtà tutte le stelle visibili di notte ed il nostro stesso Sole appartengono a questo vastissimo insieme di stelle che chiamiamo Galassia.
Se ora guardiamo nel cielo più profondo è possibile osservare altri insiemi di stelle del tutto simili alla nostra Galassia. Sono le galassie (con la “g” minuscola) di cui la più vicina, nota come galassia di Andromeda, è visibile persino ad occhio nudo da cieli particolarmente bui.
Scopo di questo post è di dare al lettore la terminologia astronomica necessaria per comprendere i soggetti di future riprese astrofotografiche. Non è nostro scopo dare una descrizione completa di tali corpi e fenomeni celesti. Il lettore interessato potrà trovare tali informazioni in qualsiasi libro di Astronomia.




C/2011 L4 (PAN-STARRS) – 05/07/2013

Telescopio o obiettivo di acquisizione (Imaging telescope or lens): Newton SkyWatcher BlackDiamond 150 mm f/5

Camera di acquisizione (Imaging camera): Canon EOS 500D (Rebel T1i) con filtro Baader (with Baader Filter) [4.7 μm]

Montatura (Mount): SkyWatcher NEQ6

Telescopio o obiettivo di guida (Guiding telescope or lens): Rifrattore ED (ED reftactor) Tecnosky Carbon Fiber 80mm f/7

Camera di guida (Guiding camera): Magzero MZ-5m B/W [5.2 μm]

Riduttore di focale (Focal reducer): non presente (not present)

Software (Software): IRIS + Adobe Photoshop CS3/CS6

Accessori (Accessories): correttore di coma Baader MPCC (coma corrector)

Filtri (Filter):  non presente (not present)

Risoluzione (Resolution): 4752 x 3168 (originale/original), 4770 x 3178 (finale/final)

Data (Date): 05/07/2013

Luogo (Location): Capanne di Cosola – AL, Italia (Italy)

Pose (Frames): 1 x 360 sec at/a 800 ISO.

Calibrazione (Calibration): 14 x 360 sec dark, 110 bias, 107 flat

Fase lunare media (Average Moon phase): 5.3%

Campionamento (Pixel scale): 1.2797 arcsec/pixel

Focale equivalente (Equivalent focal lenght): 750 mm

Note (note):

C/2011 L4 (PAN-STARRS) - 05/07/2013




M16 (NGC 6611) – 05/07/2013

Telescopio o obiettivo di acquisizione (Imaging telescope or lens): Newton SkyWatcher BlackDiamond 150 mm f/5

Camera di acquisizione (Imaging camera): Canon EOS 500D (Rebel T1i) con filtro Baader (with Baader Filter) [4.7 μm]

Montatura (Mount): SkyWatcher NEQ6

Telescopio o obiettivo di guida (Guiding telescope or lens): Rifrattore ED (ED reftactor) Tecnosky Carbon Fiber 80mm f/7

Camera di guida (Guiding camera): Magzero MZ-5m B/W [5.2 μm]

Riduttore di focale (Focal reducer): non presente (not present)

Software (Software): IRIS + Adobe Photoshop CS3/CS6

Accessori (Accessories): correttore di coma Baader MPCC (coma corrector)

Filtri (Filter):  non presente (not present)

Risoluzione (Resolution): 4752 x 3168 (originale/original), 4770 x 3178 (finale/final)

Data (Date): 05/07/2013

Luogo (Location): Capanne di Cosola – AL, Italia (Italy)

Pose (Frames): 16 x 360 sec at/a 800 ISO.

Calibrazione (Calibration): 14 x 360 sec dark, 110 bias, 107 flat

Fase lunare media (Average Moon phase): 5.3%

Campionamento (Pixel scale): 1.2797 arcsec/pixel

Focale equivalente (Equivalent focal lenght): 750 mm

Note (note):

M16 (NGC 6611) - 05/07/2013




M22 (NGC 6656) – 05/07/2013

Telescopio o obiettivo di acquisizione (Imaging telescope or lens): Newton SkyWatcher BlackDiamond 150 mm f/5

Camera di acquisizione (Imaging camera): Canon EOS 500D (Rebel T1i) con filtro Baader (with Baader Filter) [4.7 μm]

Montatura (Mount): SkyWatcher NEQ6

Telescopio o obiettivo di guida (Guiding telescope or lens): Rifrattore ED (ED reftactor) Tecnosky Carbon Fiber 80mm f/7

Camera di guida (Guiding camera): Magzero MZ-5m B/W [5.2 μm]

Riduttore di focale (Focal reducer): non presente (not present)

Software (Software): IRIS + Adobe Photoshop CS3/CS6

Accessori (Accessories): correttore di coma Baader MPCC (coma corrector)

Filtri (Filter):  non presente (not present)

Risoluzione (Resolution): 4752 x 3168 (originale/original), 4770 x 3178 (finale/final)

Data (Date): 05/07/2013

Luogo (Location): Capanne di Cosola – AL, Italia (Italy)

Pose (Frames): 2 x 360 sec at/a 800 ISO.

Calibrazione (Calibration): 14 x 360 sec dark, 110 bias, 107 flat

Fase lunare media (Average Moon phase): 5.3%

Campionamento (Pixel scale): 1.2797 arcsec/pixel

Focale equivalente (Equivalent focal lenght): 750 mm

Note (note):

M22 (NGC 6656) - 05/07/2013




Via Lattea – 12/07/2013

Telescopio o obiettivo di acquisizione (Imaging telescope or lens): Canon EF-S 55-250mm IS II f/4.0 utilizzato a (used at) 74mm f/5.0

Camera di acquisizione (Imaging camera): Canon EOS 500D (Rebel T1i) [4.7 μm]

Montatura (Mount): iOpron StarTracker

Telescopio o obiettivo di guida (Guiding telescope or lens): non presente (not present)

Camera di guida (Guiding camera): non presente (not present)

Riduttore di focale (Focal reducer): non presente (not present)

Software (Software): IRIS + Adobe Photoshop CS3/CS6

Accessori (Accessories): non presente (not present)

Filtri (Filter):  non presente (not present)

Risoluzione (Resolution): 3888 x 2592 (originale/original), 4691 x 3122 (finale/final)

Data (Date): 12/07/2013

Luogo (Location): Castel del Monte – AQ, Italia (Italy)

Pose (Frames): 17 x 180 sec at/a 1600 ISO

Calibrazione (Calibration): 4 x 180 sec dark (08/07/2013), 20 bias (08/07/2013), 20 flat (13/07/2013).

Fase lunare media (Average Moon phase): 18.4%

Campionamento (Pixel scale):  circa/about 1.82 arcsec/pixel

Focale equivalente (Equivalent focal lenght): 74 mm

Note (note):

Via Lattea - 12/07/2013




Via Lattea – 08/07/2013

Telescopio o obiettivo di acquisizione (Imaging telescope or lens): Canon EF-S 18-55mm f/3.5 utilizzato a (used at) 27mm f/5.0

Camera di acquisizione (Imaging camera): Canon EOS 500D (Rebel T1i) [4.7 μm]

Montatura (Mount): iOpron StarTracker

Telescopio o obiettivo di guida (Guiding telescope or lens): non presente (not present)

Camera di guida (Guiding camera): non presente (not present)

Riduttore di focale (Focal reducer): non presente (not present)

Software (Software): IRIS + Adobe Photoshop CS3

Accessori (Accessories): non presente (not present)

Filtri (Filter):  non presente (not present)

Risoluzione (Resolution): 3888 x 2592 (originale/original), 4770 x 3178 (finale/final)

Data (Date): 08/07/2013

Luogo (Location): Fonte Cerreto – AQ, Italia (Italy)

Pose (Frames): 6 x 180 sec at/a 1600 ISO

Calibrazione (Calibration): 4 x 180 sec dark (08/07/2013), 20 bias (08/07/2013), 18 flat (13/07/2013).

Fase lunare media (Average Moon phase): 0.2%

Campionamento (Pixel scale):  circa/about 38.60 arcsec/pixel

Focale equivalente (Equivalent focal lenght): 27 mm

Note (note):

Via Lattea - 08/07/2013




Via Lattea – 12/07/2013

Telescopio o obiettivo di acquisizione (Imaging telescope or lens): Canon EF-S 18-55mm f/3.5 utilizzato a (used at) 27mm f/5.0

Camera di acquisizione (Imaging camera): Canon EOS 500D (Rebel T1i) [4.7 μm]

Montatura (Mount): iOpron StarTracker

Telescopio o obiettivo di guida (Guiding telescope or lens): non presente (not present)

Camera di guida (Guiding camera): non presente (not present)

Riduttore di focale (Focal reducer): non presente (not present)

Software (Software): IRIS + Adobe Photoshop CS3

Accessori (Accessories): non presente (not present)

Filtri (Filter):  non presente (not present)

Risoluzione (Resolution): 3888 x 2592 (originale/original), 4644 x 2995 (finale/final)

Data (Date): 12/07/2013

Luogo (Location): Castel del Monte – AQ, Italia (Italy)

Pose (Frames): 10 x 180 sec at/a 1600 ISO

Calibrazione (Calibration): 4 x 180 sec dark (08/07/2013), 20 bias (08/07/2013), 18 flat (13/07/2013).

Fase lunare media (Average Moon phase): 18.4%

Campionamento (Pixel scale):  circa/about 38.60 arcsec/pixel

Focale equivalente (Equivalent focal lenght): 27 mm

Note (note):

Via Lattea - 12/07/2013





Astrofotografia a Medio Campo

Quale è il motivo che spinge astrofili e fotografi a vagare nelle fredde notti invernali con  un cavalletto, una reflex ed un obiettivo grandangolare? Sarà forse la magia dei paesaggi notturni  illuminati dalla luce di stelle che così brillarono in un lontano passato o semplicemente la necessità di liberare quei ricordi indelebili dalla gabbia della nostra memoria?

Per un motivo o per l’altro ecco che in poco tempo e con molta forza di volontà i primi risultati astrofotografici non tardano ad arrivare trasformando una ripresa notturna in un vero e proprio capolavoro artistico e scientifico.

L’appetito però vien mangiando e navigando sul web è possibile vedere immagini di galassie e nebulose riprese con comuni reflex. Per fare ciò è però necessario avere un telescopio, una montatura equatoriale sufficientemente robusta, un telescopio di guida, un reticolo illuminato o una camera di guida, una flat box e tanta tanta energia elettrica sotto forma di pesanti batterie.

Tutto questo rende la ripresa degli oggetti del profondo cielo particolarmente costosa e vincolata alla possibilità di raggiungere il luogo di ripresa in auto.

Ecco quindi che il giovane astrofotografo si arrende, limitando le sue capacità fotografiche alle “sole” riprese a grande campo.

Oggi però esiste la possibilità di fare riprese a medio campo utilizzando astroinseguitori “economici”. Questi oggetti sono delle vere e proprie montature portatili, leggere e con ingombro limitato; caratteristiche che ne permettono il trasporto in aereo o in zaini da montagna.

In questo articolo assumerò come medio campo una porzione di cielo inquadrato di lato compreso tra 25° e 4°. Se utilizzassimo una reflex con sensore Canon APS-C, questo si tradurrebbe nell’utilizzo di obiettivi con focale compresa tra 50 e 300 mm. Con tali lunghezze focali, l’utilizzo di sistemi di guida risultano superflui e persino una montatura potrebbe venire sostituita da un semplice cavalletto a patto di ridurre i tempi di posa a pochi secondi. Tale vincolo può essere superato utilizzando per l’appunto gli astroinseguitori che, opportunamente stazionati, permettono di effettuare pose di alcuni minuti persino alle focali più lunghe.

Figura 1: Esempio di immagine a medio campo (focale 100mm). È visibile la nebulosa Cuore (IC 1805) ed il Doppio Ammasso del Perseo.

L’Universo del medio campo offre tante possibilità quante quelle della ripresa a lunga focale. Infatti nel cielo abbiamo regioni nebulari molto estese come quelle nel Cigno, nubi stellari come quella dello Scudo, galassie di grandi dimensioni come M31 ed infine ammassi aperti quali le Pleiadi. A questi oggetti del profondo cielo bisogna poi aggiungere i fenomeni “transienti” come le congiunzioni astronomiche e il passaggio di comete luminose.

A titolo di esempio riporto un’immagine della congiunzione Giove – Iadi – Pleiadi ripresa il 2 Marzo 2013 dal parcheggio dell’Osservatorio Astronomico di Sormano (CO).

Ricordo ancora quella sera. Avevo appena acquistato l’astroinseguitore iOptron StarTracker e da giorni pianificavo di testarlo per determinare la massima focale supportata dallo strumento. Proprio per questo motivo presi con me la mia Canon EOS 500D modificata, una serie di zoom ed il mio nuovo astroinseguitore montato su cavalletto Manfrotto 055 X PRO B e testa, anch’essa Manfrotto, modello 494 RC2. Arrivato al parcheggio dell’Osservatorio stazionai lo strumento in meno di 5 minuti: impressionante considerando la mezz’ora necessaria per installare la mia strumentazione per la ripresa a campo stretto!

A questo punto testai tutte le focali a disposizione su M42 per determinare i massimi tempi di esposizione possibili con l’astroinseguitore in esame. Purtroppo quella sera il tasso di umidità era molto elevato e asciugare l’ottica senza modificare la messa a fuoco non fu certo un lavoro semplice.

Terminati tutti i test previsti, decisi di fare una prima ripresa “curata”. Purtroppo il tempo di appannamento delle ottiche dettò la durata complessiva delle pose e quindi dovetti optare per ISO molto elevati (1600 ISO) in modo da avere più segnale possibile.

Guardando il cielo decisi che la congiunzione tra Giove e le ninfe del Toro era un’occasione da non perdere. Così scelsi una lunghezza focale pari a 70mm in grado di includere comodamente il trio. Purtroppo dovetti lavorare a f/8 in quanto lo zoom utilizzato, un Canon EF 70 – 300 mm f/4-5.6 IS USM, presentava dei difetti ottici a seguito di un urto accidentale avvenuto durante una passeggiata diurna.

Con tali impostazioni riuscii a fare 10 pose da 4 minuti, tutte inseguite perfettamente. A queste seguirono gli scatti di calibrazione: 5 dark, 50 bias e 50 flat. Per la prima volta utilizzai il telecomando invece del controllo remoto in modo da svincolarmi completamente dall’utilizzo del computer.

Figura 2: La congiunzione Iadi, Pleiadi e Giove descritta nell'articolo. Nel campo è visibile anche l'ammasso aperto NGC 1647.

Unica difficoltà riscontrata sul campo fu la messa a fuoco. Purtroppo le “stelle”, anche quelle più luminose, non erano visibili utilizzando la funzione Live-View fatta eccezione di Giove. Per la messa a fuoco utilizzai così il gigante gassoso e lo zoom digitale 10x.

Giunto a casa gli scatti grezzi in formato RAW furono dati in pasto ad IRIS e quindi Photoshop  per la cosmetica. Il risultato finale lo trovate in Figura 2. Per ottenerlo è stato utilizzato il metodo del “Filtro Minimo” per la riduzione dei diametri stellari al fine di evidenziare la nebulosità intorno alle Pleiadi. Le stelle più luminose della costellazione del Toro sono poi state ulteriormente rafforzate aggiungendo degli spikes con il plug-in StarSpikes Pro 2 di Photoshop. A questo punto è possibile aggiungere le linee guida della costellazione del Toro nonché le sigle degli oggetti del profondo cielo presenti nel campo inquadrato.

Concludendo, grazie all’utilizzo di questi astroinseguitori oggi è veramente possibile realizzare riprese eccezionali a medio e grande campo. Inoltre la trasportabilità degli stessi permette di raggiungere posti eccezionalmente bui spesso non accessibili in auto.

Quindi ora non avete scuse: liberate la fantasia e cieli sereni a tutti!




Luna e Sole

Potremmo affermare che tra tutti i corpi celesti, la Luna e il Sole sono quelli più noti anche tra quelle persone non appassionate di Astronomia. In passato erano importantissimi, dato che con il loro moto, determinavano il passaggio del tempo. Il Sole è la stella più vicina alla Terra e questo fa si che essa appaia come l’oggetto più luminoso del cielo. La sua luminosità è così elevata che la luce solare viene diffusa dall’atmosfera terrestre che pertanto si illumina coprendo così la luce delle altre stelle. Questo è il motivo per cui di giorno non riusciamo ad osservare nessun corpo celeste ad eccezione della Luna, del pianeta Venere e di eventuali fenomeni transienti come comete, meteore o esplosioni di supernovae. Grazie all’ausilio di filtri specializzati è possibile osservare una regione della nostra stella nota come fotosfera, che potremmo definire come la “superficie” del Sole. Questa appare come una superficie luminosa uniforme, solcata a volte da macchie scure e filamenti brillanti. Le prime sono note come macchie solari e rappresentano delle regioni più fredde della fotosfera. Queste prendono parte alla rotazione solare e evolvono nel tempo modificando continuamente la loro forma e dimensione. Il Sole presenta dei periodi in cui è ricco di macchie solari, alternati a periodi di apparente quiescenza. Tali periodi prendono rispettivamente il nome di massimo e minimo solare. La distanza temporale tra due massimi solari è nota come ciclo solare ed è pari a circa 11 anni. Le regioni più brillanti della fotosfera sono le facole e in contrapposizione alle macchie solari sono regioni particolarmente calde. Grazie a particolari telescopi, noti come telescopi solari H-alfa, è possibile osservare la regione sovrastante la fotosfera, nota come cromosfera. La cromosfera potremmo interpretarla come “l’atmosfera solare”. Le strutture più evidenti della cromosfera sono le protuberanze solari; immensi getti di gas e plasma che raggiungono spesso dimensioni enormi pari a parecchie volte il diametro dell’intera Terra. La cromosfera è visibile, insieme alla regione ancor più esterna costituita da gas rarefatto e nota con il nome di corona, durante le eclissi totali di Sole.

Eclissi Totale di Sole - 11/08/1999. Dall'immagine è ben visibile la corona solare.

Durante questi fenomeni visibili da Terra, la Luna si interpone tra il Sole e il nostro pianeta, oscurando così la luce della fotosfera e rendendo visibile la cromosfera. Quando la sovrapposizione non è perfetta e la Luna non riesce a coprire perfettamente il Sole allora si parla di eclissi anulare.
La Luna appare vista dal Terra delle stesse dimensioni angolari del Sole. Questo è dovuto al fatto che il diametro della nostra stella sia circa 400 volte quello lunare e, nello stesso tempo, la Luna sia 400 volte più vicina alla Terra. Condizione fortuita ma che permette il manifestarsi delle eclissi totali così come le conosciamo. La Luna è il nostro unico satellite naturale e ruota intorno a noi, così come su se stessa, con un periodo di circa un mese. Conseguenza di questo sincronismo tra periodo di rivoluzione e rotazione è che la Luna mostra a noi terrestri sempre la stessa faccia. Malgrado questo, a causa del moto di rivoluzione intorno alla Terra, la Luna presenta le fasi. Quando la Luna è completamente illuminata dal Sole si parla di Luna Piena, quando è illuminata per metà Luna al Primo o Ultimo Quarto infine quando non è illuminata e quindi invisibile tra le luci del giorno si dice essere Luna Nuova. Se, durante la fase di Luna Piena, il nostro satellite viene completamente oscurato dal cono d’ombra terrestre, allora si manifesta un’eclissi totale di Luna. Potrete ben capire che le eclissi di Sole avvengono unicamente in Luna Nuova, quando il nostro satellite si trova tra noi ed il Sole. Ingrandendo il disco lunare attraverso un semplice binocolo, teleobiettivo o telescopio è possibile notare alcune conformazioni tipiche quali crateri da impatto, pianure note anche come mari lunari, vallate o catene montuose. Come per la durata del giorno, anche il periodo tra due Lune Piene non è esattamente 27 giorni 7 ore e 42 minuti ovvero il periodo di rivoluzione della Luna detto mese siderale ma 29 giorni 12 ore e 44 minuti a seguito del moto della stella intorno al Sole. Quest’ultimo periodo è detto mese sinodico.




Giugno 2013

Riportiamo gli scarti, le prove ed altro riferiti al mese di Aprile 2013 (per maggiori informazioni cliccare qui) . Il mese di Giugno è stato un mese povero dal punto di vista astrofotografico. Infatti, se da un lato le condizioni meteorologiche vanno via via migliorando, questo mese è stato dedicato alla manutenzione e aggiornamento dell’apparecchiatura astronomica. In particolare nella prima metà del mese è stata fatta manutenzione alla montatura SkyWatcher NEQ6 che ora non presenta più problemi di inseguimento (prima di Giugno 2013 si aveva mosso dopo 15-17 minuti di posa). Intorno alla metà del mese si è invece proceduto all’acquisto della camera CCD ATIK 383L+. Infine alla fine di Giugno è prevista una leggera modifica del sistema di guida. Con Luglio quindi la strumentazione astronomica sarà ottimizzata e pronta per l’evento della cometa ISON previsto per l’autunno 2013.

Rotazione celeste da Alghero (SS) - 06/06/2013

Test della montatura NEQ6 dopo la manutenzione effettuata da ARTESKY. Tempo di posa 20 minuti.

Spikes relativi alla stella Arturo dopo la modifica del secondario apportata da ARTESKY.

Prima luce della camera ATIK 383L+ (bin 2x2)