1

NGC 7635 – 06/12/2012

Telescopio o obiettivo di acquisizione (Imaging telescope or lens): Newton SkyWatcher BlackDiamond 150 mm f/5

Camera di acquisizione (Imaging camera): CCD Atik 314L+ B/W [6.45 μm]

Montatura (Mount): SkyWatcher NEQ6

Telescopio o obiettivo di guida (Guiding telescope or lens): Rifrattore ED (ED reftactor) Tecnosky Carbon Fiber 80mm f/7

Camera di guida (Guiding camera): Magzero MZ-5m B/W [5.2 μm]

Riduttore di focale (Focal reducer): non presente (not present)

Software (Software): IRIS + Adobe Photoshop CS3/CS6

Accessori (Accessories): correttore di coma Baader MPCC (coma corrector)

Filtri (Filter):  Astronomik CCD Hα 13nm, Astronomik CCD SII 13nm, Astronomik CCD OIII 12nm

Risoluzione (Resolution): 1391 x 1039

Data (Date): 06/12/2012

Luogo (Location): Briosco – MB, Italia (Italy)

Pose (Frames): 5 x 900 sec bin 1×1 Hα, 1 x 1024 sec bin 1×1 SII, 1 x 1024 sec bin 1×1 OIII

Calibrazione (Calibration): 5 x 900 sec dark, 1 x 1024 sec dark, 50 bias, 50 flat x  Hα, 50 flat x SII, 50 flat x OIII

Fase lunare media (Average Moon phase): 42%

Campionamento (Pixel scale): 660 sec / 374.66 pixel = 1.7616 arcsec/pixel

Focale equivalente (Equivalent focal lenght): 750 mm

Note (note): LRGB (HαSIIHαOIII)

NGC 7635 - 06/12/2012

NGC 7635 - 06/12/2012 (filtro/filter Hα)

NGC 7635 - 06/12/2012 (filtro/filter SII)

NGC 7635 - 06/12/2012 (filtro/filter OIII)




M33 (NGC 598) – 07/11/2012

Sormano (CO), 07/11/2012 – M33

Somma di 16 immagini da 195 secondi 800 ISO + 45 bias + 12 dark + 45 flat effettuata con IRIS + Photoshop

Telescopio di guida: Rifrattore ED 80 mm f/7 + Camera Magzero MZ-5m. Software controllo PhD guiding.

Telescopio di ripresa: Newton 150 mm SkyWatcher Black Diamond f/5 + correttore di coma + Camera Canon EOS 500D modificata. Software controllo Canon Utility.

M33 (NGC 598)

presentiamo anche una seconda elaborazione effettuata utilizzando la tecnica del Layered Contrast Stretching

M33 applicando il metodo Layered Contrast Stretching




IC 1396 – 05/11/2012

Briosco (MB), 05/11/2012 – IC1396
Composizione LRGB [HαHαSIIOIII] effettuata con IRIS + Photoshop dove:

  • L: Filtro Astronomik Hα 13nm. Somma di 3 immagini da 1200 secondi bin 1 x 1 effettuata con IRIS.
  • R: Filtro Astronomik Hα 13nm. Somma di 3 immagini da 1200 secondi bin 1 x 1 effettuata con IRIS.
  • G: Filtro Astronomik SII 13nm. Somma di 3 immagini da 1200 secondi bin 2 x 2 effettuata con IRIS.
  • B: Filtro Astronomik OIII 12nm. Somma di 3 immagini da 1200 secondi bin 2 x 2 effettuata con IRIS.

Telescopio di guida: Rifrattore ED 80 mm f/7 Tecnosky Carbon Fiber + Camera Magzero MZ-5m.
Obiettivo di ripresa: Newton 150 mm f/5 SkyWatcher Black Diamond + Correttore di Coma Baader + filtro Astronomik +  CCD Atik 314L+ B/W.

L’immagine è stata pensata come un primo test del nuovo Newton 150 mm f/5 Black Diamond. Purtroppo l’umidità si è depositata sulle ottiche durante la notte rovinando completamente la posa.

IC 1396 - 05/11/2012




M39 (NGC 7092) – 02/10/2012

Briosco (MB), 02/10/2012 – M39

Somma di 22 immagini da 70 secondi 400 ISO + 40 bias + 17 dark + 40 flat effettuata con IRIS + Photoshop CS2/CS3.

Telescopio di guida: Rifrattore ED 80 mm f/7 + Camera Magzero MZ-5m. Software controllo PhD guiding.

Telescopio di ripresa: Newton 150 mm f/5 + Camera Canon EOS 500D modificata. Software controllo Canon Utility.

Ripresa effettuata con Luna quasi piena.

M39 (NGC 7092) - 02/10/2012




NGC 7380 – 19/09/2012

Briosco (MB), 16/09/2012 – NGC7380
Composizione LRGB [HαSIIHαOIII] effettuata con IRIS + Photoshop (in HST Palette) dove:

  • L: Filtro Astronomik Hα 13nm. Somma di 4 immagini da 800 secondi bin 1 x 1 + 100 bias + 26 dark + 100 flat effettuata con IRIS.
  • R: Filtro Astronomik SII 13nm. Somma di 4 immagini da 900 secondi bin 1 x 1 + 100 bias + 23 dark + 100 flat effettuata con IRIS.
  • G: Filtro Astronomik Hα 13nm. Somma di 4 immagini da 800 secondi bin 1 x 1 + 100 bias + 26 dark + 100 flat effettuata con IRIS.
  • B: Filtro Astronomik OIII 12nm. Somma di 4 immagini da 800 secondi bin 1 x 1 + 100 bias + 26 dark + 100 flat effettuata con IRIS.

Telescopio di guida: Newton 200 mm f/4 SkyWatcher + Camera Magzero MZ-5m.
Obiettivo di ripresa: Rifrattore ED 80 mm f/7 Tecnosky Carbon Fiber + Spianatore/Riduttore 0.8x + filtro Astronomik +  CCD Atik 314L+ B/W.

NGC 7380 - 19/09/2012

Riportiamo di seguito anche i tre canali separatamente (SII, Hα ed OIII). L’immagine ripresa in SII mostra un leggero mosso dovuto al cattivo inseguimento della montatura NEQ6 per tempi di posa superiori ai 14 minuti. L’immagine ripresa in OIII mostra invece una leggera sfocatura dovuta all’aberrazione cromatica del rifrattore ED (o al fatto che i filtri Astronomik non sono perfettamente afocali… verificheremo in futuro).

NGC 7380 (SII) - 19/09/2012

NGC 7380 (Hα) - 19/09/2012

NGC 7380 (OIII) - 19/09/2012




NGC 7380 – 16/09/2012

Briosco (MB), 16/09/2012 – NGC7380

Somma di 12 immagini da 15 minuti bin 1 x 1 + 100 bias + 23 dark + 100 flat effettuata con IRIS + Photoshop CS2/CS3.

Telescopio di guida: Newton 200 mm f/4 SkyWatcher + Camera Magzero MZ-5m. Software controllo PhD guiding 1s.

Obiettivo di ripresa: Rifrattore ED 80 mm f/7 Tecnosky Carbon Fiber + Spianatore/Riduttore 0.8x + filtro Atik Hα 13nm +  CCD Atik 314L+ B/W, software Artemis Atik Capture

NGC7380 - 16/09/2012




M11 (NGC 6705) – 18/08/2012

Passo dello Spluga (SO), 18/08/2012 – M11

Somma di 5 immagini da 8 minuti 200 ISO + 40 bias + 6 dark + 40 flat effettuata con IRIS + Photoshop CS2/CS3.

Telescopio di guida: Rifrattore acromatico 70 mm f/7 + Camera Magzero MZ-5m. Software controllo PhD guiding.

Obiettivo di ripresa: Canon EF 100 mm f/2.8 L IS USM Macro utilizzato ad f/3.5 + Camera Canon EOS 500D modificata. Software controllo Canon Utility.

(Clicca qui per l’immagine originale in formato JPG)

 

M11 (NGC 6705) - 18/08/2012




NGC 7635 – 21/08/2012

Briosco (MB), 21/08/2012 – NGC 7635

Telescopio di ripresa: Newton 200 mm f/4 SkyWatcher + correttore di coma Baader MPCC + filtro Atik Hα 13nm +  CCD Atik 314L+ BW, software Artemis Atik Capture

Telescopio di guida: Rifrattore ED 80 mm f/7 Tecnosky Carbon Fiber + camera MagZero MZ-5m, software PhDguiding 1s.

Somma di 3 immagini da 480 secondi (totale 0:24 h). Elaborazione IRIS + Photoshop CS3.

NGC 7635 - 21/08/2012




IC 1396 – 17/08/2012

Passo dello Spluga (SO), 17/08/2012 – M52

Somma di 14 immagini da 8 minuti a 800 ISO + 30 bias + 5 dark + 31 flat effettuata con IRIS + Photoshop CS2/CS3.

Telescopio di guida: Newton 200 mm f/4 + Camera Magzero MZ-5m. Software controllo PhD guiding.

Telescopio di ripresa: Rifrattore ED 80 mm f/7 + spianatore/riduttore 0.8x + Camera Canon EOS 500D modificata. Software controllo Canon Utility.

(Clicca qui per l’immagine originale in formato JPG)

IC1396 - 17/08/2012




M52 (NGC 7654) – 17/08/2012

Passo dello Spluga (SO), 17/08/2012 – M52

Somma di 13 immagini da 12 minuti 400 ISO + 30 bias + 4 dark + 31 flat effettuata con IRIS + Photoshop CS2/CS3.

Telescopio di guida: Newton 200 mm f/4 + Camera Magzero MZ-5m. Software controllo PhD guiding.

Telescopio di ripresa: Rifrattore ED 80 mm f/7 + spianatore/riduttore 0.8x + Camera Canon EOS 500D modificata. Software controllo Canon Utility.

(Clicca qui per l’immagine originale in formato JPG)

M52 (NGC 7654) - 17/08/2012




NGC 6888 – 31/07/2012

Briosco (MB), 31/07/2012 – NGC 6888

Telescopio di ripresa: Newton 200 mm f/4 SkyWatcher + correttore di coma Baader MPCC + filtro Atik Hα 13nm +  CCD Atik 314L+ BW, software Artemis Atik Capture

Telescopio di guida: Rifrattore ED 80 mm f/7 Tecnosky Carbon Fiber + camera MagZero MZ-5m, software PhDguiding 1-4s.

Somma di 6 immagini da 500 secondi (totale 0:50 h) + 2 dark + 34 bias + 35 flat (effettuati con flatbox Geoptik). Elaborazione IRIS. Questo è un primo test di funzionamento della nuova CCD Atik e determinazione sperimentale della distanza sensore – correttore di coma. Purtroppo, forse a seguito di un cattivo allineamento polare o disallineamento telescopio di ripresa – telescopio guida, l’inseguimento è risultato problematico.

NGC6888 - 31/07/2012




NGC 7000 – 26/07/2012

Briosco (MB), 26/07/2012 – NGC7000

Telescopio di ripresa: Newton 200 mm f/4 SkyWatcher + correttore di coma Baader MPCC + camera Canon EOS 500D (modificata Baader), software Canon EOS utility.

Telescopio di guida: Rifrattore ED 80 mm f/7 Tecnosky Carbon Fiber + camera MagZero MZ-5m, software PhDguiding 1s.

L’immagine è una composizione di tre immagini monocromatiche riprese con: Filtro Astronomik Hα 13 nm (canale rosso), Filtro Astronomik SII 13 nm (canale rosso), Filtro Astronomik OIII 12 nm (canale blu). La composizione finale consiste in una tricromia tipo Hubble Palette SII-Hα-OIII. I dati per ciascun filtro sono riportati di seguito:

  • Hα: somma di 11 immagini da 2 minuti a 3200 ISO (totale 0:22 h) + 6 dark + 30 bias + 30 flat (effettuati con flatbox Geoptik). Elaborazione IRIS
  • OIII: somma di 11 immagini da 2 minuti a 3200 ISO (totale 0:22h) + 6 dark + 30 bias + 30 flat (effettuati con flatbox Geoptik). Elaborazione IRIS
  • SII: somma di 5 immagini da 4 minuti a 3200 ISO (totale 0:20h) + 3 dark + 30 bias + 30 flat (effettuati con flatbox Geoptik). Elaborazione IRIS

composizione finale effettuata con Adobe Photoshop CS2/CS3. (Clicca qui per l’immagine originale in formato JPG)

NGC7000 - 26/07/2012




NGC 7000 – 21/07/2012

Passo del Mortirolo (BS), 21/07/2012 – NGC7000

Telescopio di guida: Newton 200 mm f/4 SkyWatcher + camera MagZero MZ-5m, software PhDguiding 1-5s.

Telescopio di ripresa: Rifrattore ED 80 mm f/7 Tecnosky Carbon Fiber + riduttore/spianatore 0.8x + camera Canon EOS 500D (modificata Baader), software Canon EOS utility.

L’immagine è una somma di 30 immagini da 2 minuti a 3200 ISO (totale 1.00 h) + 27 dark + 50 bias + 50 flat (effettuati con flatbox Geoptik). Elaborazione IRIS + Photoshop CS2/CS3.

 

NGC7000 - 21/07/2012




IC 5146 – 17/07/2012

Sormano (CO), 17/07/2012 – IC 5146

Somma di 7 immagini da 12 minuti ad 800 ISO (totale 1:24h) + 40 bias + 40 flat + 5 dark effettuata con IRIS + Photoshop CS2/CS3.

Telescopio di ripresa: Rifrattore ED 80 mm f/7 + spianatore/riduttore 0.8x + Filtro UHC-E 2” + Canon EOS 500D (modificata Baader). Software controllo EOS utility.

Telescopio di guida: Newton 200 mm f/4 + Camera Magzero MZ-5m. Software controllo PhD guiding.

IC 5146 - 17/07/2012




M92 (NGC 6341) – 12/07/2012

Briosco (MB), 12/07/2012 – M92

Somma di 4 immagini da 10 minuti + 20 bias + 20 flat + 8 dark (temperatura – 0.3 °C) effettuata con IRIS + Photoshop CS3.

Telescopio di guida: Newton 200 mm f/4 + Camera Magzero MZ-5m. Software controllo PhD guiding.

Telescopio di ripresa: Rifrattore ED 80 mm f/7 + spianatore/riduttore 0.8x + Camera CCD Atik 314L+ color. Software controllo Artemis.

 

M92 (NGC 6341) - 12/07/2012




NGC 6960 – 09/07/2012

Sormano (CO), 09/07/2012 – NGC 6960

Somma di 4 immagini da 10 minuti + 20 bias + 20 flat + 8 dark (temperatura – 0.3 °C) effettuata con IRIS + Photoshop CS3.
Telescopio di ripresa: Newton 200 mm f/4 + correttore di coma Baader + Camera CCD Atik 314L+ color (proprietà Rosario Magaldi). Software controllo Artemis.
Telescopio di guida: Rifrattore ED 80 mm f/7 + Camera Magzero MZ-5m. Software controllo PhD guiding.

NGC 6960 - 09/07/2012




ADC: dal mondo analogico a quello digitale

Il segnale di carica, eventualmente trasportato lungo il sensore come nel caso dei CCD, viene convertito in un segnale analogico di tensione e quindi amplificato (si veda l’articolo La generazione del segnale: CCD e CMOS). Tale segnale avrà un’ampiezza proporzionale al numero di elettroni prodotti in ciascun fotoelemento e quindi al numero di fotoni “cosmici” che hanno raggiunto lo stesso durante il tempo di esposizione. Dato che il fenomeno di conversione fotone/elettrone è di tipo statistico quello che succede è che il valore dell’ampiezza del segnale può assumere infiniti valori nell’intorno di quello che è il valore atteso. Un segnale del genere non può essere analizzato da un computer. Si rende pertanto necessaria una traduzione dal “linguaggio” analogico ad uno di tipo “digitale”. Il computer o più precisamente il calcolatore, è in grado di compiere operazioni su numeri interi espressi in sistema binario (ovvero sequenze di uni e zeri). Questo perché gli operatori logici di un calcolatore si basano su interruttori che possono assumere unicamente due condizioni: circuito aperto (1) e circuito chiuso (0).

Lo strumento in grado di convertire un segnale analogico in un segnale digitale, ovvero trasformare un numero con infinite cifre in uno intero è detto Analog to Digital Converter (ADC).

Nel caso dei sensori CCD abbiamo un solo ADC posto dopo l’output amplifer, mentre nel caso di sensori CMOS abbiamo un ADC per ogni amplificatore presente.

A questo punto maggiore sarà il numero di cifre che l’ADC riuscirà a generare, maggiore sarà la qualità del segnale digitalizzato e quindi dell’immagine finale. Ovviamente a parità di capacità da parte del fotoelemento di accumulare carica elettrica

Questo è vero a parità di capacità da parte del fotoelemento di accumulare la carica elettrica. Il rapporto tra il massimo ed il minimo valore di carica accumulabile in ciascun fotoelemento prende il nome di range dinamico. Un ADC deve essere in grado di produrre un segnale digitale sensibile a tutti i possibili valori del range dinamico. Il valore discreto assunto da quest’ultimo sarà espresso in Analog to Digital Unit (ADU) e spazia da 256 a 65535.

Ma cosa determina questi numeri?

Abbiamo discusso prima di come il segnale in uscita dall’ADC dovrà presentarsi in una forma adatta ad essere processata da un calcolatore ovvero in codice binario. A questo punto supponiamo di avere a disposizione una sequenza formata da 8 segnali acceso/spento (ovvero 1 o 0) per ogni ampiezza digitalizzata. Questo significa che per valore pari a 0 Volt dell’ampiezza analogica avremo un segnale digitale della forma 00000000, mentre per il valore massimo di tensione assunto dall’ampiezza avremo 11111111. Se traduciamo questi due numeri in decimale avremo che 00000000 corrisponderà a 0 (ovviamente) mentre 11111111 corrisponderà a 255. Ecco perché si è detto che gli ADU possono assumere 256 valori (ovvero numeri interi compresi tra 0 e 255).

Se ora usiamo 9 segnali acceso/spento avremo un segnale digitale compreso tra 000000000 e 111111111 che in decimale è 511 ovvero una range in ADU pari a 512 valori.

Il numero di segnali acceso/spento ovvero il numero massimo di cifre del numero binario digitalizzato definisce il bit di conversione dell’ADC. Quindi nel primo esempio avevamo un ADC a 8 bit, mentre nel secondo caso a 9 bit. C’è un legame tra il numero di bit ed i possibili valori generati dall’ADC N:

N = 2bit

quindi:

  • ADC ad 8 bit – 256 valori (0 – 255 ADU)
  • ADC a 10 bit – 1024 valori (0 – 1023 ADU)
  • ADC a 14 bit – 16384 valori (0 – 16383 ADU)
  • ADC a 16 bit – 65536 valori (0 – 65535 ADU)

La capacità di un fotoelemento di raccogliere elettroni è noto come gamma dinamica. In particolare la gamma dinamica è definita come il rapporto tra il massimo ed il minimo numero di elettroni accumulabile in un fotoelemento. Ad esempio se la massima capacità di accumulo delle cariche di un fotoelemento è 5000 elettroni e la minima è 5 elettroni, la gamma dinamica è 1’000:1.

La gamma dinamica determina così il numero di bit che l’ADC deve avere per digitalizzare correttamente il segnale. Se abbiamo un sensore con gamma dinamica 1000:1 avremo bisogno di un ADC ad almeno 10 bit. Bisogna a questo punto fare attenzione che non è l’ADC a determinare la dinamica di un sensore ma viceversa. A ciascun valore discreto della gamma dinamica, correttamente digitalizzato dall’ADC è associabile un tono di grigio. Si parla quindi di gamma tonale come del numero di possibili toni necessari per descrivere la gamma dinamica del sensore.

Riassumendo quindi un sensore può essere sensibile ad una maggiore differenza luce-ombre a seconda della propria gamma dinamica. A parità di gamma dinamica però il segnale può venire digitalizzato correttamente o con un ADC in grado di fornire valori (livelli) inferiori alla gamma dinamica. Nel primo caso si parla di gamma tonale adeguata, nel secondo caso invece si ha una scarsa gamma tonale.

Assunta una scelta dell’ADC proporzionata alla gamma dinamica del sensore, il numero di bit di un ADC, e quindi il range di valori o livelli di luminosità possibili a seguito della digitalizzazione del segnale, definisce il range tonale di un sensore. Un’immagine ad 8 bit è in grado pertanto di distinguere 256 toni di grigio, una a 16 bit 65536 e così via.

Ma quanti toni vede l’occhio umano? Non abbiamo un numero preciso ma si stima che un occhio umano sia in grado di distinguere circa 10’000’000 di colori. Pertanto sarebbe necessario un ADC a 24 bit (16’777’216 livelli) per digitalizzare correttamente il segnale.

In “Costruire un’immagine a colori” vedremo come un’immagine a colori da 24 bit può essere “scomposta” a partire da tre immagini in scala di grigio da 8 bit. In termini pratici quindi un occhio umano può distinguere al massimo 256 toni di grigio.

Perché quindi le camere CCD in bianco e nero producono immagini a 16 bit? La soluzione sta nella possibilità, tramite tecniche di elaborazione delle immagini astronomiche di “comprimere” una dinamica molto ampia fornita dai sensori CCD in un’immagine a 8 bit. Questo permetterebbe ad esempio di avere nella stessa immagine dettagli di luminosità estremamente diversa. Per maggiori dettagli si faccia riferimento all’articolo Istogramma e stretching dinamico: come ottenere il massimo dalla dinamica del nostro sensore.




La generazione del segnale: CCD e CMOS

Nell’articolo “Il Fotoelemento: Fotodiodo e Photogate” abbiamo visto come fotodiodi e photogate vengono naturalmente utilizzati come mezzo di conversione fotone/elettrone nella maggior parte delle camere commerciali, siano esse CCD o semplici DSLR. Il problema della scarsa dimensione della regione di svuotamento dei fotodiodi è stata recentemente risolta applicando delle microlenti. Queste sono in grado di convogliare gran parte della luce verso la regione fotosensibile del fotodiodo. Analogamente anche i photogate sono stati ottimizzati utilizzando elettrodi sempre più sottili oppure facendo incidere i fotoni dal lato opposto (si parla di sensori back-illuminated).

Supponendo di esporre il fotoelemento per un determinato periodo di tempo alla radiazione luminosa, noto come tempo di esposizione, quello che otterremo è una certa quantità di carica accumulata sulle armature del nostro “ipotetico” condensatore costituito dalla distribuzione di carica ai bordi della regione di svuotamento.

In un sensore abbiamo milioni di fotoelementi, ciascuno con la sua carica accumulata durante il tempo di esposizione. Come fare ora a processare tutti queste informazioni fondamentali per ricostruire l’immagine originale? Ci sono due strategie e quindi di sensori che prendono il nome di Charge Coupled Device (CCD) e Complementary Metal Oxide Semiconductor (CMOS).

CHARGE COUPLED DEVICE

Il CCD è un fotoelemento a cui vengono applicati due, tre o quattro elettrodi in polisilicio(si parla di CCD a due, tre o quattro fasi). Tali elettrodi servono per trasportare attraverso opportuni potenziali la carica elettrica depositata da una parte all’altra del fotoelemento, nonché da un fotoelemento all’altro.

L'immagine riassume il trasporto della carica all'interno del singolo fotoelemento. La carica accumulata in prossimità del primo elettrodo (A) viene mano a mano spostata verso l'ultimo elettrodo attraverso una serie di step (B-C-D-E). Con la stessa procedura sarà poi possibile passare la carica al fotoelemento confinante (F), iniziando quello che è il processo di trasporto della carica in un sensore CCD.

E’ così possibile sequenzialmente spostare la carica accumulata da un pixel all’altro permettendo a questa di percorrere lunghe distanze con perdite che si riducono a meno dello 0.00001%. Difetti nel reticolo cristallino dei fotoelementi possono produrre perdite maggiori ed è per questo che i CCD sono molto sensibili ai danni da radiazione nucleare.

Il trasporto avviene seguendo linee verticali di fotoelementi (VCCD). L’ultima linea orizzontale di fotoelementi, grazie ad uno spessore metallico, è schermata dalla luce (HCCD). La carica di tutti i fotoelementi VCCD vicini all’HCCD viene trasferita a quest’ultimo che a sua volta la muoverà orizzontalmente verso l’output amplifer, un amplificatore che amplificherà il segnale di carica trasformandolo in un segnale analogico (tensione).

Attraverso questo schema alla fine i valori di carica di ciascun fotoelemento verrà trasformato in un segnale. Essendo la lettura sequenziale non è possibile leggere il valore di carica di un determinato fotoelemento senza leggere prima tutto il sensore. Abbiamo tre tipi di CCD a seconda di come il segnale venga inviato all’output amplifer:

  • Full frame: è il sistema “classico” in cui i fotoelementi si comportano sia da luoghi di accumulo che da luoghi di trasporto. Proprio per questo motivo i sensori CCD di tipo Full frame devono essere ricoperti da un otturatore meccanico al termine della ripresa. Il vantaggio ottenuto è un aumento della superficie fotosensibile e della capacità di accumulo delle cariche.
  • Interline transfer: in questo caso abbiamo che il fotoelemento non coincide con il luogo di trasporto della carica. In tale tipo di CCD ciascun fotoelemento viene duplicato: uno sarà l’elemento fotosensibile mentre l’altro, posto a lato, verrà opportunamente schermato dalla radiazione luminosa e servirà per il trasporto di carica. Alla fine dello scatto la carica accumulata viene così trasferita dal fotoelemento fotosensibile a quello schermato e quindi via via fino all’output amplifer. Questo permette di ridurre i tempi di attesa tra uno scatto e l’altro nonché la possibilità di fare a meno dell’otturatore meccanico. Il tutto purtroppo a scapito di una diminuzione della superficie fotosensibile.
  • Frame transfer: in questo caso il fotoelemento coincide con il luogo di trasporto, ma il segnale di carica invece di essere inviato all’HCCD e quindi all’output amplifer viene “copiato” su un duplicato dell’intero sensore schermato però dalla radiazione luminosa. Questo al fine di diminuire i tempi di amplificazione, responsabili principali del tempo di elaborazione del segnale di carica dopo uno scatto di ripresa. A differenza dell’interline transfer il frame transfer ha una superficie fotosensibile maggiore a scapito però di un maggiore consumo di spazio e potenza elettrica assorbita.

Schema di trasporto dei diversi tipi di CCD

Infine l’output amplifer trasformerà il segnale di carica in segnale di tensione amplificato. Questo verrà successivamente digitalizzato tramite un opportuno ADC. Per maggiori dettagli si faccia riferimento all’articolo ADC: dal mondo analogico a quello digitale.

COMPLEMENTARY METAL OXIDE SEMICONDUCTOR

Nel CMOS ogni elemento fotosensibile in Silicio (fotodiodo o photogate) è affiancato dal sistema di formazione e amplificazione del segnale di tensione con successiva digitalizzazione attraverso un opportuno ADC. Questo comporta la presenza di tre, quattro o cinque transistor oltre ad una seria di microcavi che connettono ciascun fotoelemento. A differenza del CCD, l’accesso è ad indirizzo e non sequenziale. Il vantaggio è la possibilità di accedere ad un determinato fotoelemento senza dover per forza “leggere” l’intero sensore. Esistono due tipi di CMOS legati non tanto al sistema di trasporto del segnale quanto al processo di amplificazione:

  • Passive Pixel Sensor (PPS): è il sistema più semplice costituito da un solo amplificatore per colonna di fotoelementi. Questo permette di ridurre il numero di transistor a uno solo aumentando pertanto la superficie sensibile alla radiazione luminosa a scapito di un aumento del rumore a seguito della presenza di un maggior numero di cavi di collegamento (bus).
  • Active Pixel Sensor (APS): è il tipo di CMOS più diffuso dove ogni fotoelemento è affiancato da un amplificatore. A differenza dei PPS il numero di bus è notevolmente ridotto anche se i transistor nel fotoelemento aumentano da uno fino ad un massimo di cinque.

Grazie alle basse tensioni di funzionamento i CMOS consumano fino a 10 volte meno dei CCD a scapito di un aumento del rumore termico. Per maggiori dettagli si legga l’articolo Guida all’astrofotografia digitale.

Oggi sensori con tecnologia CMOS sono utilizzati principalmente per le DSLR commerciali grazie ai bassi consumi (importanti per la trasportabilità della camera, riducendo il consumo di batterie) e prezzi di produzione. Anche le webcam economiche sfruttano spesso sensori di tipo CMOS generalmente più veloci dei CCD.

Sensori con tecnologia CCD sono invece i più diffusi nel mondo dell’astrofotografia digitale, grazie alla loro maggiore capacità di raccogliere e convertire la radiazione luminosa mantenendo basso il rumore (o se volete alto il rapporto segnale/rumore).