1

C/2012 K5 (LINEAR) – 29/12/2012

Telescopio o obiettivo di acquisizione (Imaging telescope or lens): Newton SkyWatcher BlackDiamond 200 mm f/5 [Sartori Olga]

Camera di acquisizione (Imaging camera): CCD Atik 314L+ color [6.45 μm] [Rosario Magaldi]

Montatura (Mount): SkyWatcher NEQ6 [Sartori Olga]

Telescopio o obiettivo di guida (Guiding telescope or lens): non presente (not present)

Camera di guida (Guiding camera): non presente (not present)

Riduttore di focale (Focal reducer): non presente (not present)

Software (Software): IRIS + Adobe Photoshop CS6

Accessori (Accessories): non presente (not present)

Filtri (Filter):  non presente (not present)

Risoluzione (Resolution): 1391 x 1039 (originale/original), 1235 x 923 (finale/final)

Data (Date): 29/12/2012

Luogo (Location): Sormano – CO, Italia (Italy)

Pose (Frames): 7 x 60 sec bin 1×1 a/at -20.0°C.

Calibrazione (Calibration): non presente (not present)

Fase lunare media (Average Moon phase): 90%

Campionamento (Pixel scale): circa 1.3212 arcsec/pixel

Focale equivalente (Equivalent focal lenght): 1000 mm

Note (note): copyright GRUPPO AMICI DEL CIELO.

C/2012 K5 (LINEAR) - 29/12/2012

Per scaricare i file originali in formato FIT clicca qui (password richiesta) / Click here in order to download the original files in FIT format (password request)




Vincitore Concorso ASTROfotografico 2012

Il vincitore del Concorso ASTROfotografico 2012 organizzato da ASTROtrezzi va a ROCCO PARISI con l’immagine dal titolo Centro Via Lattea effettuata con una fotocamera reflex digitale modello Canon EOS 550D modificata Baader BCF + Obiettivo Yashica ML 50mm f/2 utilizzato ad f/4. La ripresa è stata inseguita il giorno 23/06/2012 dai Monti Nebrodi (Sicilia, 1600 m s.l.m.) con Montatura SkyWatcher HEQ5 Synscan. Il risultato ottenuto è somma di 22 immagini da 180 secondi a 1600 ISO calibrata con 7 dark, 21 flat e 21 bias per un tempo integrato pari a 1h 6min. Elaborazione effettuata con il software DeepSkyStacker e Photoshop CS3.

Immagine vincitrice del Concorso ASTROfotografico 2012 (ROCCO PARISI)

ASTROtrezzi.it ha valutato tutte le immagini inviante dai lettori sia dal punto di vista tecnico che soggettivo assegnando a ciascuna un punteggio in centesimi. La vincitrice del concorso ha ottenuto 90/100 rispecchiando da un lato le ottime qualità tecniche della ripresa (dallo scatto alla post produzione) e dall’altro l’idea che si cela dietro tale immagine ovvero la capacità di ottenere immagini fantastiche del cielo notturno anche con strumenti semplici. Questo sia di stimolo per quanti vogliono cominciare a muovere i primi passi nel mondo dell’astrofotografia, spesso scoraggiati dai prezzi e dalle complesse tecnologie dell’era digitale.

Davide Trezzi ringrazia tutti i partecipanti ed in particolare Maia Mosconi, Simona Danielli, Boris Mosconi, Paolo Mori, Rosario Magaldi, Ilea Valentin, Emiliano Riva, Giuseppe Alvaro ed ovviamente Rocco Parisi. Scegliere tra le 34 foto in gara non è stato semplice dato che tutte si sono dimostrate di elevata qualità tecnica ed espressiva. Non mi resta di augurarvi un Buon Anno e sperare di rivedervi con fantastiche immagini nella prossima edizione del Concorso Astrofotografico di ASTROtrezzi.it

Di seguito riportiamo per ciascun autore l’immagine che ha ottenuto il punteggio maggiore: buona visione! Per visualizzare tutte le altre immagini in concorso clicca qui.

ngg_shortcode_0_placeholder




Notturno a Sormano – 28/12/2012

Riportiamo alcune immagini riprese da Sormano (CO) il 28/12/2012 in condizione di Luna Piena. La camera di ripresa è una Canon EOS 40D + Obiettivo Samyang FishEye 8mm su cavalletto. I dati tecnici sono riportati sotto ciascuna immagine.

We post some pictures taken in Sormano (CO) the 28th of December 2012 with full moon. Camera was a Canon EOS 40D  + Samyang FishEye 8mm lens on tripod. Technical data are reported under each picture.

 

218 sec, 400 ISO, f/22

270 sec., 400 ISO, f/22

300 sec, 400 ISO, f/22

Per scaricare i file originali in formato CR2 clicca qui (password richiesta) / Click here in order to download the original files in CR2 format (password request)




Sole in Hα – 09/12/2012

Telescopio o obiettivo di acquisizione (Imaging telescope or lens): LUNT H-alpha 60mm BF1200 [Gruppo Amici del Cielo]

Camera di acquisizione (Imaging camera): Imaging Source DBK31.AU03 colori [4.65 μm] [Gruppo Amici del Cielo]

Montatura (Mount): SkyWatcher NEQ6

Telescopio o obiettivo di guida (Guiding telescope or lens): non presente (not present)

Camera di guida (Guiding camera): non presente (not present)

Riduttore di focale (Focal reducer): non presente (not present)

Software (Software): Registax6 + Adobe Photoshop CS6

Accessori (Accessories): non presente (not present)

Filtri (Filter): non presente (not present)

Risoluzione (Resolution): 1024 x 768

Data (Date): 09/12/2012

Luogo (Location): Briosco – MB, Italia (Italy)

Pose (Frames): mosaico di 17 pose, ciascuna somma di 1000 frames per l’immagine a colori (mosaic of 17 pictures, each one is sum of 1000 frames for the true color image) / mosaico di 12 pose, ciascuna somma di 1000 frames per l’immagine solar nirvana (mosaic of 17 pictures, each one is sum of 1000 frames for the solar nirvana image).

Calibrazione (Calibration): non presente (not present)

Fase lunare media (Average Moon phase): 13%

Campionamento (Pixel scale): 1950 sec / 1016 pixel = 1.9193 arcsec/pixel

Focale equivalente (Equivalent focal lenght): 500 mm

Sole in Hα – 09/12/2012

Riportiamo anche l’immagine della sola Cromosfera (effetto eclisse) / Image of Chromosphere only (eclipse effect) is also reported.

Sole in Hα – 09/12/2012

Riportiamo il Solar Nirvana effettuato sul bordo nord occidentale del Sole / Solar Nirvana is also reported.

Solar Nirvana - Sole 09/12/2012




Giove – 19/12/2012

Telescopio o obiettivo di acquisizione (Imaging telescope or lens): Newton SkyWatcher WidePhoto 200 mm f/4

Camera di acquisizione (Imaging camera): Imaging Source DBK31.AU03 colori/color [4.65 μm] – Magzero MZ-5m B/W [5.2 μm]

Montatura (Mount): SkyWatcher NEQ6

Telescopio o obiettivo di guida (Guiding telescope or lens): non presente (not present)

Camera di guida (Guiding camera): non presente (not present)

Riduttore di focale (Focal reducer): non presente (not present)

Software (Software): Registax5.1/Registax6 + Adobe Photoshop CS6

Accessori (Accessories): Lente di Barlow TeleVue Powermate 5x (TeleVue Powermate 5x Barlow lens)

Filtri (Filter): non presente (not present)

Risoluzione (Resolution): 1024 x 768800 x 600

Data (Date): 19/12/2012

Luogo (Location): Briosco – MB, Italia (Italy)

Pose (Frames): somma di circa 1000 frames

Calibrazione (Calibration): non presente (not present)

Fase lunare media (Average Moon phase): 49.9%

Campionamento (Pixel scale): 0,21727 arcsec/pixel – 0.24599 arcsec/pixel

Focale equivalente (Equivalent focal lenght): 4360 mm

Giove - 19/12/2012 - il satellite in figura è Io

 

Giove - 19/12/2012 - il satellite in figura è Io

 

Giove - 19/12/2012 - il satellite in figura è Io

 

Giove - 19/12/2012 - il satellite in figura è Io

(clicca qui per scaricare le immagini originali in formato TIFF – click here in order to download the TIFF files)




B8-βOri (Rigel)

La stella β della costellazione di Orione è di tipo B8 Iab e si trova a 860 A.L. dalla nostra stella. Questa ruota su se stessa con una velocità di circa 43 km/s. La stella è una supergigante blu con temperatura stimata è intorno ai 12’000 K.

L’immagine in figura rappresenta lo spettro di βOri ripresa il giorno 19 Dicembre 2012 alle ore 23.24 (TMEC) da Briosco (MB) con un telescopio Newton SkyWatcher 200mm f/4 + reticolo di diffrazione StarAnalyser 100 + camera Magzero MZ-5m. Di seguito è riportato l’istogramma dellla regione di interesse. L’offset ottenuto tramite fit gaussiano è 103.735 pixel. La massima luminosità è raggiunta per lunghezze d’onda pari a 5271.8 Å. Scarica il file di testo della misura.

Spettro di assorbimento non calibrato (Visual Spec)

A questo punto si è proceduto alla realizzazione dello spettro MAX-assorbimento al fine di semplificare le future operazioni di fit. Effettuando un fit gaussiano sui picchi otteniamo:

  • 3958.7 Å  linea Hε dell’HI (3969.7 Å)
  • 4084.7 Å linea Hδ dell’HI (4101.3 Å)
  • 4332.9 Å linea Hγ dell’HI (4340.0 Å)
  • 4844.2 Å linea Hβ dell’HI (4860.8 Å)
  • 4902.9 Å
  • 5187.5 Å
  • 6781.8 Å
  • 5841.3 Å
  • 5897.4 Å
  • 6246.4 Å
  • 6841.0 Å
  • 7577.8 Å

 

La stessa stella è stata ripresa con il medesimo setup anche allre ore 23.24 (TMEC). L’offset ottenuto tramite fit gaussiano è 23.1432 pixel. La massima luminosità è raggiunta per lunghezze d’onda pari a 5288.1 Å. Scarica il file di testo della misura.

Spettro di assorbimento non calibrato (Visual Spec)

  • 4336.4 Å linea Hγ dell’HI (4340.0 Å)
  • 4853.9 Å linea Hβ dell’HI (4860.8 Å)
  • 4902.0 Å
  • 5081.0 Å
  • 5179.4 Å
  • 5460.9 Å
  • 5772.5 Å
  • 5869.6 Å
  • 6256.2 Å
  • 6663.7 Å
  • 6856.4 Å
  • 7162.8 Å
  • 7274.7 Å
  • 7591.3 Å
  • 8199.8 Å



B2-ζTau

La stella ζ della costellazione del Toro è un sistema binario di cui la principale è una gigante blu di tipo B2 IIIpe situato a 417 A.L. dalla nostra stella. La principale è anche una stella Be e ruota su se stessa con una velocità di circa 20 km/s. La temperatura stimata è intorno ai 19’340 K.

L’immagine in figura rappresenta lo spettro di ζTau ripresa il giorno 19 Dicembre 2012 alle ore 23.14 (TMEC) da Briosco (MB) con un telescopio Newton SkyWatcher 200mm f/4 + reticolo di diffrazione StarAnalyser 100 + camera Magzero MZ-5m. Di seguito è riportato l’istogramma dellla regione di interesse. L’offset ottenuto tramite fit gaussiano è 21.2611 pixel. La massima luminosità è raggiunta per lunghezze d’onda pari a 4969.0 Å. Scarica il file di testo della misura.

Spettro di assorbimento non calibrato (Visual Spec)

A questo punto si è proceduto alla realizzazione dello spettro MAX-assorbimento al fine di semplificare le future operazioni di fit. Effettuando un fit gaussiano sui picchi otteniamo:

  • 3873.2 Å linea Hζ dell’HI (3888.6 Å)
  • 3957.7 Å linea Hε dell’HI (3969.7 Å)
  • 4089.5 Å linea Hδ dell’HI (4101.3 Å)
  • 4329.2 Å linea Hγ dell’HI (4340.0 Å)
  • 4374.6 Å
  • 4454.5 Å
  • 4545.1 Å
  • 4626.6 Å
  • 4846.8 Å linea Hβ dell’HI (4860.8 Å)
  • 4906.1 Å
  • 4994.6 Å
  • 5188.9 Å
  • 5278.8 Å
  • 5444.6 Å
  • 5774.8 Å
  • 5859.6 Å
  • 6494.1 Å
  • 6650.2 Å
  • 6857.0 Å
  • 7162.5 Å
  • 7261.0 Å
  • 7580.9 Å
  • 7747.8 Å
  • 8215.4 Å



B2-γOri (Bellatrix)

La stella γ della costellazione di Orione è di tipo B2 III e si trova tra 240 A.L. dalla nostra stella. Questa ruota su se stessa con una velocità di circa 50 km/s. La stella è una gigante blu anche se l’assegnazione a questa categoria di stelle è ancora controversa. La temperatura stimata è intorno ai 22’000 K.

L’immagine in figura rappresenta lo spettro di γOri ripresa il giorno 19 Dicembre 2012 alle ore 23.19 (TMEC) da Briosco (MB) con un telescopio Newton SkyWatcher 200mm f/4 + reticolo di diffrazione StarAnalyser 100 + camera Magzero MZ-5m. Di seguito è riportato l’istogramma dellla regione di interesse. L’offset ottenuto tramite fit gaussiano è 28.3933 pixel. La massima luminosità è raggiunta per lunghezze d’onda pari a 5275.3 Å. Scarica il file di testo della misura.

Spettro di assorbimento non calibrato (Visual Spec)

A questo punto si è proceduto alla realizzazione dello spettro MAX-assorbimento al fine di semplificare le future operazioni di fit. Effettuando un fit gaussiano sui picchi otteniamo:

  • 3882.5 Å linea Hζ dell’HI (3888.6 Å)
  • 3968.2 Å linea Hε dell’HI (3969.7 Å)
  • 4099.0 Å linea Hδ dell’HI (4101.3 Å)
  • 4338.7 Å linea Hγ dell’HI (4340.0 Å)
  • 4466.8 Å
  • 4527.9 Å
  • 4549.0 Å
  • 4633.0 Å
  • 4856.6 Å linea Hβ dell’HI (4860.8 Å)
  • 4912.1 Å
  • 5189.7 Å
  • 5781.2 Å
  • 5864.4 Å
  • 6553.7 Å linea Hα dell’HI (6562.1 Å)
  • 6656.4 Å
  • 6865.1 Å
  • 7170.1 Å
  • 7592.7 Å
  • 8183.4 Å



B0-εOri (Alnilam)

La stella ε della costellazione di Orione è di tipo B0 Iab e si trova tra 1’300 e 1’600 A.L. dalla nostra stella. Questa ruota su se stessa con una velocità di circa 25.9 km/s. La stella è una supergigante blu molto calda e molto luminosa. La temperatura stimata è intorno ai 28’500 K.

L’immagine in figura rappresenta lo spettro di εOri ripresa il giorno 19 Dicembre 2012 alle ore 23.29 (TMEC) da Briosco (MB) con un telescopio Newton SkyWatcher 200mm f/4 + reticolo di diffrazione StarAnalyser 100 + camera Magzero MZ-5m. Di seguito è riportato l’istogramma dellla regione di interesse. L’offset ottenuto tramite fit gaussiano è 25.8346 pixel. La massima luminosità è raggiunta per lunghezze d’onda pari a 5301.6 Å. Scarica il file di testo della misura.

Spettro di assorbimento non calibrato (Visual Spec)

 A questo punto si è proceduto alla realizzazione dello spettro MAX-assorbimento al fine di semplificare le future operazioni di fit. Effettuando un fit gaussiano sui picchi otteniamo:

  • 3969.2 Å linea Hε dell’HI (3969.7 Å)
  • 4094.4 Å linea Hδ dell’HI (4101.3 Å)
  • 4347.2 Å linea Hγ dell’HI (4340.0 Å)
  • 4470.2 Å
  • 4649.8 Å
  • 4864.1 Å linea Hβ dell’HI (4860.8 Å)
  • 4926.3 Å
  • 5049.6 Å
  • 5201.1 Å
  • 5455.5 Å
  • 5487.5 Å
  • 5579.4 Å
  • 5778.0 Å
  • 5868.1 Å
  • 6264.8 Å
  • 6661.8 Å
  • 6866.0 Å
  • 7175.0 Å
  • 7266.4 Å
  • 7600.2 Å

La stessa stella è stata ripresa con il medesimo setup anche allre ore 23.30 (TMEC). L’offset ottenuto tramite fit gaussiano è 31.9885 pixel. La massima luminosità è raggiunta per lunghezze d’onda pari a5279.5 Å. Scarica il file di testo della misura.

Spettro di assorbimento non calibrato (Visual Spec)

A questo punto si è proceduto alla realizzazione dello spettro MAX-assorbimento al fine di semplificare le future operazioni di fit. Effettuando un fit gaussiano sui picchi otteniamo:

  • 4337.0 Å linea Hγ dell’HI (4340.0 Å)
  • 4453.9 Å
  • 4639.0 Å
  • 4854.0 Å linea Hβ dell’HI (4860.8 Å)
  • 4908.6 Å
  • 5196.1 Å
  • 5464.6 Å
  • 5775.7 Å
  • 5864.3 Å
  • 6223.1 Å
  • 6255.8 Å
  • 6654.4 Å
  • 6861.1 Å
  • 7166.1 Å
  • 7590.6 Å



La “modifica Baader” per DSLR

L’avvento della fotografia digitale ha aperto un nuovo mondo all’astrofotografo che da pellicole ipersensibilizzate, tiraggi e rullini in frigorifero si è ritrovato catapultato nel pianeta del rumore elettronico, somme e flat field.

Se però in passato per riprendere il cielo era necessaria tanta esperienza sul campo e una reflex, oggi non è più cosi. Infatti gran parte dell’esperienza la si fa davanti al computer sfogliando i numerosi articoli presenti sul web mentre una reflex digitale offre si la possibilità di riprendere il cielo ma con molte limitazioni. Infatti al fine di migliorare le immagini fornite dai sensori digitali, che altrimenti risulterebbero poco definite, si è deciso di montare di fronte al sensore CMOS un filtro IR-cut. Questo è importantissimo per le riprese diurne ma è un peso insostenibile per l’astrofotografo notturno. Tale filtro è vero che taglia l’IR ma, allo stesso tempo, diminuisce notevolmente la sensibilità del sensore nella regione rossa dello spettro elettromagnetico ed in particolare in prossimità della lunghezza d’onda a 6561.1 Å nota come linea Hα dell’Idrogeno. Gran parte delle nebulose purtroppo emettono in questa frequenza e una riduzione di efficienza quantica in tale zona risulta pertanto dannosa in termini astrofotografici.

Ecco quindi che l’azienda Baader ha messo in produzione alcuni filtri che, se sostituiti a quelli ufficiali posti di fronte al sensore delle DSLR, permettono di recuperare completamente l’efficienza quantica in quella regione dello spettro. I filtri Baader rimangono dei filtri IR-cut, dato che la radiazione IR deve comunque essere bloccata al fine di salvaguardare la qualità dell’immagine, ma allo stesso tempo risultano trasparenti alla linea Hα dell’Idrogeno. Ovviamente la Baader non è l’unica azienda che produce filtri del genere ma ad oggi la sostituzione del filtro originale con uno astronomico prende generalmente il nome di “modifica Baader”. Anche Canon ha prodotto due modelli di reflex digitali con filtri modificati per l’astronomica ed esattamente la Canon EOS 20Da e la moderna Canon EOS 60Da.

Figura 1: L'efficienza quantica dei pixel rossi di una Canon EOS 40D originale (linea tratteggiata) e modificata Baader (linea continua). La banda nera rappresenta la posizione della linea Hα dell'Idrogeno, lunghezza d'onda dove emettono gran parte delle nebulose.

Escludendo questi modelli “commerciali”, la sostituzione dei filtri Baader è a carico del consumatore che può comunque fare affidamento su persone specializzate nel settore che sostituiscono il filtro ad un prezzo contenuto.

Ma quanto si guadagna in termini astrofotografici con la sostituzione del filtro? La risposta è semplice: molto. Se si considera ad esempio una Canon EOS 40D; l’efficienza quantica dei pixel rossi passa dal 8.09% originali al 24.61% del modello modificato Baader (vedi Figura 1). Un fattore 3 in efficienza quantica svolge un ruolo fondamentale nella buona riuscita di una ripresa astronomica. Un confronto tra due riprese effettuate con una Canon EOS 500D originale e modifica è riportato in Figura 2.

Cosa possiamo dire riguardo i pixel verdi e blu? Come influisce la modifica su questi tipi di pixel? La risposta è semplice e la trovate nella figura 1 dell’articolo “Efficienza Quantica”. La modifica Baader sostanzialmente non modifica l’efficienza quantica dei pixel verdi e blu. Questo si traduce nel non avere nessun tipo di guadagno in luminosità per oggetti di quel colore. Pertanto, riprendere nebulose come quella che circondano le Pleiadi o galassie come la Grande Galassia di Andromeda, con filtro originale o Baader, non comporta nessuna differenza.

Figura 2: Un confronto tra due immagini della nebulosa M8 ed M20 nel Sagittario riprese con una Canon EOS 500D originale (immagine di sinistra) e modificata (immagine di destra).




NGC 7635 – 10/12/2012

Telescopio o obiettivo di acquisizione (Imaging telescope or lens): Newton SkyWatcher BlackDiamond 150 mm f/5

Camera di acquisizione (Imaging camera): CCD Atik 314L+ B/W [6.45 μm]

Montatura (Mount): SkyWatcher NEQ6

Telescopio o obiettivo di guida (Guiding telescope or lens): Rifrattore ED (ED reftactor) Tecnosky Carbon Fiber 80mm f/7

Camera di guida (Guiding camera): Magzero MZ-5m B/W [5.2 μm]

Riduttore di focale (Focal reducer): non presente (not present)

Software (Software): IRIS + Adobe Photoshop CS3/CS6

Accessori (Accessories): correttore di coma Baader MPCC (coma corrector)

Filtri (Filter):  Astronomik CCD Hα 13nm, Astronomik CCD RGB

Risoluzione (Resolution): 1391 x 1039 (originale/original), 1291 x 951 (finale/final)

Data (Date): 06-10/12/2012

Luogo (Location): Briosco – MB, Italia (Italy)

Pose (Frames): 5 x 900 sec bin 1×1 Hα (06/12/2012) a/at -17.0°C, 6 x 480 sec bin 1×1 R (10/12/2012) a/at -14.9°C, 4 x 480 sec bin 1×1 G (10/12/2012) a/at -14.9°C, 4 x 480 sec bin 1×1 B (10/12/2012) a/at -14.9°C.

Calibrazione (Calibration): 5 x 900 sec dark Hα (06/12/2012), 9 x 480 sec dark RGB (10/12/2012), 50 bias Hα (06/12/2012), 50 bias RGB (10/12/2012), 50 flat Hα (06/12/2012), 50 flat R (10/12/2012), 50 flat G (10/12/2012), 50 flat B (10/12/2012)

Fase lunare media (Average Moon phase): 42% (06/12/2012), 6% (10/12/2012)

Campionamento (Pixel scale): 660 sec / 374.66 pixel = 1.7616 arcsec/pixel

Focale equivalente (Equivalent focal lenght): 750 mm

Note (note): LRGB (HαRGB)

NCG 7635 - 10/12/2012

Per scaricare i file originali in formato FIT clicca qui (password richiesta) / Click here in order to download the original files in FIT format (password request)




Efficienza Quantica

Nell’articolo Il fotoelemento: fotodiodo e photogateabbiamo visto come un fotone di lunghezza d’onda compresa tra 350 e 1100 nm ha una certa probabilità di venir “convertito” in elettroni liberi. Ovviamente quanto detto è un concetto generale che in questo post andremo ad approfondire più dettagliatamente. In primo luogo ricordiamo che il limite a bassa lunghezza d’onda è fissato dalla riflessione dei fotoni incidenti sul Silicio che compone il fotoelemento mentre quello ad alta lunghezza d’onda è fissato dall’energy gap del materiale. A lunghezze d’onda inferiori e superiori il Silicio diviene praticamente trasparente (riflettente) alla radiazione luminosa.

Nell’articolo E’ questione di elettroni abbiamo detto che se un fotone si trova nel range di lunghezze d’onda appropriato, questo verrà assorbito dal fotoelemento. Questo è vero se lo spessore del Silicio fosse infinito. Infatti un fotone di lunghezza d’onda λ ha una determinata probabilità P di essere assorbito da uno spessore d di Silicio. Per un fotoelemento, tale probabilità è generalmente inferiore al 100% e aumenta all’aumentare di d. Questo spiega perché i sensori retroilluminati (più spessi) sono anche quelli più sensibili alla radiazione luminosa.

Ora, P(λ) rappresenta veramente la probabilità che un fotone di lunghezza d’onda λ venga registrato dal nostro sensore, sia esso di tipo CCD o CMOS? Ovviamente no. Infatti P(λ) non tiene in considerazione la geometria del fotoelemento, la capacità di raccogliere la carica depositata e molti altri fattori. La grandezza fisica che raccoglie tutte queste informazioni è detta efficienza quantica QE. Ovviamente QE è funzione di λ e riflette complessivamente l’andamento di P(λ).

L’efficienza quantica, per definizione, è riferita ad un singolo fotoelemento e quindi è un concetto generalizzabile ad un sensore a patto di considerare la risposta di ciascun pixel alla luce identica. Inoltre la risposta del Silicio alla luce dipende dalla temperatura dello stesso ed in particolare si ha una riduzione di QE al diminuire della temperatura di funzionamento. Quindi non è sempre detto che un Silicio funziona tanto meglio quanto raffreddato (si veda l’articolo “Il dark frame”).

Al fine di migliorare l’assorbimento della luce, solitamente viene posto uno strato antiriflesso di fronte al fotoelemento.

Nel caso delle DSLR è necessario prendere in considerazione anche la presenza dei filtri interposti nel cammino ottico. In particolare il filtro IR-cut posto di fronte al sensore e la matrice di filtri colorati RGB. Ecco quindi che rivenditori, come ad esempio Nikon o Canon, forniscono per ogni fotocamera digitale tre curve di efficienza quantica, una per ciascun filtro colorato.

In figura 1 riportiamo l’efficienza quantica dell’occhio umano, di un sensore CCD (Atik 314L+ monocromatica), di un sensore CMOS (Magzero MZ-5m) e di una reflex digitale (sensore CMOS Canon EOS 40D) con e senza modifica Baader.

Figura 1: confronto tra efficienze quantiche di diversi strumenti per la visione/ripresa notturna.




NGC 7635 – 06/12/2012

Telescopio o obiettivo di acquisizione (Imaging telescope or lens): Newton SkyWatcher BlackDiamond 150 mm f/5

Camera di acquisizione (Imaging camera): CCD Atik 314L+ B/W [6.45 μm]

Montatura (Mount): SkyWatcher NEQ6

Telescopio o obiettivo di guida (Guiding telescope or lens): Rifrattore ED (ED reftactor) Tecnosky Carbon Fiber 80mm f/7

Camera di guida (Guiding camera): Magzero MZ-5m B/W [5.2 μm]

Riduttore di focale (Focal reducer): non presente (not present)

Software (Software): IRIS + Adobe Photoshop CS3/CS6

Accessori (Accessories): correttore di coma Baader MPCC (coma corrector)

Filtri (Filter):  Astronomik CCD Hα 13nm, Astronomik CCD SII 13nm, Astronomik CCD OIII 12nm

Risoluzione (Resolution): 1391 x 1039

Data (Date): 06/12/2012

Luogo (Location): Briosco – MB, Italia (Italy)

Pose (Frames): 5 x 900 sec bin 1×1 Hα, 1 x 1024 sec bin 1×1 SII, 1 x 1024 sec bin 1×1 OIII

Calibrazione (Calibration): 5 x 900 sec dark, 1 x 1024 sec dark, 50 bias, 50 flat x  Hα, 50 flat x SII, 50 flat x OIII

Fase lunare media (Average Moon phase): 42%

Campionamento (Pixel scale): 660 sec / 374.66 pixel = 1.7616 arcsec/pixel

Focale equivalente (Equivalent focal lenght): 750 mm

Note (note): LRGB (HαSIIHαOIII)

NGC 7635 - 06/12/2012

NGC 7635 - 06/12/2012 (filtro/filter Hα)

NGC 7635 - 06/12/2012 (filtro/filter SII)

NGC 7635 - 06/12/2012 (filtro/filter OIII)




A0-θAur (Mahasim o Bogardus)

La stella θ della costellazione dell’Auriga è un sistema binario di cui la componente più luminosa di classe spettrale A0pSi e si trova a circa 166 A.L. dalla nostra stella. Questa ruota su se stessa con una velocità di circa 29.5 km/s. La massa della stella è circa il triplo di quella del Sole ed il raggio cinque volte tanto. La temperatura stimata è intorno ai 10’400 K.

L’immagine in figura rappresenta lo spettro di θAur ripresa il giorno 03 Dicembre 2012 alle ore 21.45 (TMEC) da Briosco (MB) con un telescopio Newton SkyWatcher 200mm f/4 + reticolo di diffrazione StarAnalyser 100 + camera Magzero MZ-5m. Una prima analisi dello spettro di assorbimento mostra in modo marcato la presenza della serie di Balmer ed in particolare le linee dalla Hα alla Hζ. Di seguito è riportato l’istogramma dellla regione di interesse. L’offset ottenuto tramite fit gaussiano è 41.6979 pixel. La massima luminosità è raggiunta per lunghezze d’onda pari a 4995.2 Å. Scarica il file di testo della misura.

Spettro di assorbimento non calibrato (Visual Spec)

A questo punto si è proceduto alla realizzazione dello spettro MAX-assorbimento al fine di semplificare le future operazioni di fit. Effettuando un fit gaussiano sui picchi otteniamo:

  • 3882.8 Å linea Hζ dell’HI (3888.6 Å)
  • 3971.0 Å linea Hε dell’HI (3969.7 Å)
  • 4098.4 Å linea Hδ dell’HI (4101.3 Å)
  • 4340.6 Å linea Hγ dell’HI (4340.0 Å)
  • 4620.5 Å linea da identificare
  • 4740.3 Å linea da identificare
  • 4860.7 Å linea Hβ dell’HI (4860.8 Å)
  • 5202.8 Å linea da identificare
  • 5576.4 Å linea da identificare
  • 5623.9 Å linea da identificare
  • 5790.9 Å linea da identificare
  • 5885.9 Å linea da identificare
  • 6257.5 Å linea da identificare
  • 6551.4 Å linea Hα dell’HI (6562.1 Å)
  • 7597.9 Å linea da identificare
  • 7751.6 Å linea da identificare
  • 8184.4 Å linea da identificare



A5-βTri

La stella β della costellazione del Triangolo è di tipo A5III e si trova a circa 127 A.L. dalla nostra stella. Questa ruota su se stessa con una velocità di circa 70 km/s. La stella è una variabile probabilmente di tipo spettroscopica ad eclisse. La temperatura stimata è intorno ai 7’220 K.

L’immagine in figura rappresenta lo spettro di βTri ripresa il giorno 03 Dicembre 2012 alle ore 22.01 (TMEC) da Briosco (MB) con un telescopio Newton SkyWatcher 200mm f/4 + reticolo di diffrazione StarAnalyser 100 + camera Magzero MZ-5m. Una prima analisi dello spettro di assorbimento mostra in modo marcato la presenza della serie di Balmer ed in particolare le linee dalla Hα alla Hη. Di seguito è riportato l’istogramma dellla regione di interesse. L’offset ottenuto tramite fit gaussiano è 25.971 pixel. La massima luminosità è raggiunta per lunghezze d’onda pari a 5095.0 Å. Scarica il file di testo della misura.

Spettro di assorbimento non calibrato (Visual Spec)

A questo punto si è proceduto alla realizzazione dello spettro MAX-assorbimento al fine di semplificare le future operazioni di fit. Effettuando un fit gaussiano sui picchi otteniamo:

  • 3827.3 Å linea Hη dell’HI (3835.0 Å)
  • 3886.2 Å linea Hζ dell’HI (3888.6 Å)
  • 3966.9 Å linea Hε dell’HI (3969.7 Å)
  • 4096.9 Å linea Hδ dell’HI (4101.3 Å)
  • 4336.4 Å linea Hγ dell’HI (4340.0 Å)
  • 4626.0 Å linea da identificare
  • 4860.0 Å linea Hβ dell’HI (4860.8 Å)
  • 5191.8 Å linea da identificare
  • 5588.5 Å linea da identificare
  • 5795.1 Å linea da identificare
  • 6544.8 Å linea Hα dell’HI (6562.1 Å)
  • 7593.2 Å linea da identificare
  • 7746.4 Å linea da identificare
  • 8181.8 Å linea da identificare
  • 8812.7 Å linea da identificare



A1-βAur (Menkalinan)

La stella β della costellazione dell’Auriga è un sistema stellare triplo di cui la stella più luminosa di classe A1IV e si trova a circa 81 A.L. dalla nostra stella. La sua massa è praticamente il triplo di quello del Sole mentre la massa circa il doppio. La temperatura effettiva è pari a circa 9’000 K e ruota su se stessa con una velocità di 33 km/s. Del sistema triplo, la seconda stella Menkalian B ha praticamente le stesse caratteristiche della componente principale. Il sistema Menkalian A e B costituiscono una variabile spettroscopica ad eclisse.

L’immagine in figura rappresenta lo spettro di βAur ripresa il giorno 03 Dicembre 2012 alle ore 21.37 (TMEC) da Briosco (MB) con un telescopio Newton SkyWatcher 200mm f/4 + reticolo di diffrazione StarAnalyser 100 + camera Magzero MZ-5m. Una prima analisi dello spettro di assorbimento mostra in modo marcato la presenza della serie di Balmer ed in particolare le linee dalla Hα alla Hζ. Di seguito è riportato l’istogramma dellla regione di interesse. L’offset ottenuto tramite fit gaussiano è 16.3886 pixel. La massima luminosità è raggiunta per lunghezze d’onda pari a 5285.6 Å. Scarica il file di testo della misura.

Spettro di assorbimento non calibrato (Visual Spec)

A questo punto si è proceduto alla realizzazione dello spettro MAX-assorbimento al fine di semplificare le future operazioni di fit. Effettuando un fit gaussiano sui picchi otteniamo:

  • 3878.5 Å linea Hζ dell’HI (3888.6 Å)
  • 3962.7 Å linea Hε dell’HI (3969.7 Å)
  • 4092.9 Å linea Hδ dell’HI (4101.3 Å)
  • 4332.3 Å linea Hγ dell’HI (4340.0 Å)
  • 4617.7 Å linea da identificare
  • 4854.1 Å linea Hβ dell’HI (4860.8 Å)
  • 5188.8 Å linea da identificare
  • 5480.0 Å linea da identificare
  • 5577.6 Å linea da identificare
  • 5786.7 Å linea da identificare
  • 5892.5 Å linea da identificare
  • 6252.7 Å linea da identificare
  • 6545.8 Å linea Hα dell’HI (6562.1 Å)
  • 7591.8 Å linea da identificare
  • 7744.8 Å linea da identificare
  • 8186.1 Å linea da identificare
  • 8819.4 Å linea da identificare
  • 8966.5 Å linea da identificare

La stessa stella è stata ripresa con il medesimo setup anche il giorno 19/12/2012 ore 23.03 (TMEC). L’offset ottenuto tramite fit gaussiano è 31.4795 pixel. La massima luminosità è raggiunta per lunghezze d’onda pari a 5274.4 Å. Scarica il file di testo della misura.

Spettro di assorbimento non calibrato (Visual Spec)

A questo punto si è proceduto alla realizzazione dello spettro MAX-assorbimento al fine di semplificare le future operazioni di fit. Effettuando un fit gaussiano sui picchi otteniamo:

  • 3810.9 Å linea Hη dell’HI (3835.0 Å)
  • 3878.1 Å linea Hζ dell’HI (3888.6 Å)
  • 3958.4 Å linea Hε dell’HI (3969.7 Å)
  • 4090.3 Å linea Hδ dell’HI (4101.3 Å)
  • 4328.9 Å linea Hγ dell’HI (4340.0 Å)
  • 4849.3 Å linea Hβ dell’HI (4860.8 Å)
  • 5784.8 Å
  • 6240.1 Å
  • 6546.5 Å linea Hα dell’HI (6562.1 Å)
  • 6866.6 Å
  • 7583.2 Å
  • 8188.2 Å



A7-αCep (Alderamin)

La stella α della costellazione del Cefeo è di tipo A7IV-V e si trova a circa 49 A.L. dalla nostra stella. La sua massa è praticamente il doppio di quello del Sole mentre il suo raggio è 2.5 volte. La temperatura effettiva è pari a 7’500 – 8’000 K e ruota su se stessa con una velocità di 246 km/s.

L’immagine in figura rappresenta lo spettro di αCep ripresa il giorno 03 Dicembre 2012 alle ore 21.55 (TMEC) da Briosco (MB) con un telescopio Newton SkyWatcher 200mm f/4 + reticolo di diffrazione StarAnalyser 100 + camera Magzero MZ-5m. Una prima analisi dello spettro di assorbimento mostra in modo marcato la presenza della serie di Balmer ed in particolare le linee dalla Hα alla Hε. Di seguito è riportato l’istogramma dellla regione di interesse. L’offset ottenuto tramite fit gaussiano è 22.0295 pixel. La massima luminosità è raggiunta per lunghezze d’onda pari a 5289.3 Å. Scarica il file di testo della misura.

Spettro di assorbimento non calibrato (Visual Spec)

A questo punto si è proceduto alla realizzazione dello spettro MAX-assorbimento al fine di semplificare le future operazioni di fit. Effettuando un fit gaussiano sui picchi otteniamo:

  • 3959.1 Å linea Hε dell’HI (3969.7 Å)
  • 4093.7 Å linea Hδ dell’HI (4101.3 Å)
  • 4333.4 Å linea Hγ dell’HI (4340.0 Å)
  • 4860.2 Å linea Hβ dell’HI (4860.8 Å)
  • 5187.3 Å linea da identificare
  • 5445.4 Å linea da identificare
  • 5489.7 Å linea da identificare
  • 5552.7 Å linea da identificare
  • 5592.1 Å linea da identificare
  • 5783.4 Å linea da identificare
  • 5891.9 Å linea da identificare
  • 6246.5 Å linea da identificare
  • 6551.3 Å linea Hα dell’HI (6562.1 Å)
  • 7282.8 Å linea da identificare
  • 7600.0 Å linea da identificare
  • 7744.0 Å linea da identificare
  • 8191.7 Å linea da identificare
  • 8650.7 Å linea da identificare
  • 8981.2 Å linea da identificare
  • 9318.4 Å linea da identificare



Misura della costante di Rydberg utilizzando un reticolo di diffrazione

ARTICOLI DI ASTRONOMIA AMATORIALE
VOLUME 1 NUMERO 1 (2012)

ABSTRACT

La temperatura dell’atmosfera stellare di stelle di classe spettrale A è tale per cui gli atomi di Idrogeno presenti si trovano principalmente in uno stato legato con numero quantico principale n maggiore o uguale a due. Le transizioni sullo stato fondamentale risultano quindi sfavorite e il canale aperto più probabile è la transizione dal livello n’ > 2 allo stato n = 2 (Serie di Balmer). Dato che la lunghezza d’onda della radiazione assorbita dal gas stellare è legata ai numeri quantici n ed n’ dalla nota formula di Rydberg, è possibile estrarre il valore dell’omonima costante R a partire dallo spettro elettromagnetico misurato al telescopio con un reticolo di diffrazione di tipo Star Analyser 100. In questo articolo si riportano i dati ottenuti utilizzando gli spettri di 14 stelle di tipo A acquisiti nell’anno 2012.

SCARICA L’ARTICOLO IN FORMATO PDF