1

C/2011 L4 (PAN-STARRS) – 31/03/2013

Telescopio o obiettivo di acquisizione (Imaging telescope or lens): Newton SkyWatcher BlackDiamond 150 mm f/5

Camera di acquisizione (Imaging camera): Canon EOS 500D (Rebel T1i) con filtro Baader (with Baader Filter) [4.7 μm]

Montatura (Mount): SkyWatcher NEQ6

Telescopio o obiettivo di guida (Guiding telescope or lens): non presente (not present)

Camera di guida (Guiding camera): non presente (not present)

Riduttore di focale (Focal reducer): non presente (not present)

Software (Software): Adobe Photoshop CS6

Accessori (Accessories): correttore di coma Baader MPCC (coma corrector)

Filtri (Filter):  non presente (not present)

Risoluzione (Resolution): 4752 x 3168 (originale/original), 4752 x 3168 (finale/final)

Data (Date): 31/03/2013

Luogo (Location): Sormano – CO, Italia (Italy)

Pose (Frames): singolo scatto da 15 secondi a 3200 ISO.

Calibrazione (Calibration): non presente (not present)

Fase lunare media (Average Moon phase): 74.7%

Campionamento (Pixel scale):  1.288604 arcsec/pixel

Focale equivalente (Equivalent focal lenght): 750 mm

Note (note): purtroppo la cometa si trovava dietro a degli alberi / the comet was behind a lot of trees

C/2011 L4 (PAN-STARRS) – 31/03/2013





Marzo 2013

Riportiamo gli scarti, le prove ed altro riferiti al mese di Marzo 2013 (per maggiori informazioni cliccare qui) .

 

 

 

 

 

La regione di M35 - 31/03/2013

La regione di M35 con indicati i nomi degli oggetti più luminosi - 31/03/2013

Regione del Doppio Ammasso del Perseo - 31/03/2013

Regione del Doppio Ammasso del Perseo con indicati i nomi degli oggetti più luminosi - 31/03/2013

M44 - 31/03/2013




Osservare e Riprendere Saturno

Saturno è il sesto pianeta del Sistema Solare ed il più debole visibile ad occhio nudo da cieli suburbani. Occhio nudo? Si, avete capito bene. Tutti i pianeti ad esclusione di Nettuno (Urano è al limite) sono visibili ad occhio nudo; questo spiegherebbe anche perché gli antichi Greci, senza l’ausilio di strumenti ottici, sapevano dell’esistenza di questi lontani pianeti. Infatti, chi più chi meno, i pianeti appaiono come stelle luminose che a differenza delle altre presenti in cielo che non cambiano mai la loro posizione relativa (da cui il nome ormai arcaico di “stelle fisse”) queste si muovono giorno dopo giorno, anno dopo anno. Proprio il moto di questi astri diede loro il nome di pianeta ovvero “stella vagabonda”. Quindi non c’è da stupirsi se uscendo di casa la sera, al tramonto o all’alba noterete i pianeti brillare con quella luce proveniente dal Sole che le atmosfere planetarie riflettono con cura dando al pianeta un colore caratteristico. Nel caso di Saturno, l’idrogeno e l’elio presente in atmosfera fanno assumere al pianeta una tinta giallastra. Ecco quindi che Saturno apparirà ai nostri occhi come una stella gialla di media luminosità.

Come individuarla rispetto alle “stelle fisse”? Ci sono vari metodi. Il primo è osservare se, giorno dopo giorno, questa stella si sposta rispetto alle altre. Questo metodo ovviamente è poco efficace e richiede una pazienza che solo gli antichi astronomi possedevano. Una seconda via è quella di imparare a conoscere le stelle fisse, ovvero imparare la posizione e la forma delle costellazioni. Infatti ricordiamo che le costellazione sono costituite dalle stelle più luminose del cielo e quindi se impariamo a conoscerle possiamo subito notare la presenza di una stella “estranea” come ad esempio un pianeta o una cometa. Dato l’elevato livello tecnologico raggiunto in questi anni è possibile anche utilizzare applicazioni per smartphone che vi permettono di individuare automaticamente Saturno puntando il vostro cellulare verso il cielo. Per chi non possiede uno smartphone ma ha un computer portatile, il software Stellarium potrà sicuramente darvi una mano nell’identificazione dell’astro.

Una volta individuato Saturno ad occhio nudo non possiamo fare molto di più che osservarne il moto durante le stagioni. Questo era l’unica informazione a disposizione degli antichi astronomi che infatti sapevano dell’esistenza dei pianeti ma non avrebbero mai potuto intuire la bellezza celata dentro quel puntino luminoso.

Oggi però molti di noi posseggono binocoli e telescopi in grado di mostrarci le caratteristiche del pianeta. Utilizzando una ventina di ingrandimenti osserviamo infatti che il pianeta non è più puntiforme ma presenta una forma allungata: non è il vostro binocolo che ha problemi ottici! La forma ad ellisse è dovuta alla presenza dell’anello. Purtroppo a bassi ingrandimenti non è possibile separare il disco del pianeta dall’anello e il risultato complessivo è un ovale luminoso. Ma non demordete, già a quegli ingrandimenti è possibile osservare intorno al pianeta una stella luminosa. Si tratta della luna maggiore di Saturno: Titano. Se osservate con attenzione giorno dopo giorno noterete come questa stellina si muove rimanendo sempre nei pressi del pianeta.

Saturno ripreso il 04/06/2009. Confrontando le osservazioni del pianeta effettuate sulla scala di anni è possibile notare la diversa inclinazione degli anelli del pianeta.

Una volta intuita la forma dell’anello e individuato Titano, la curiosità di vedere meglio diventerà irresistibile. Non vi resta pertanto che acquistare un telescopio o seguire il gruppo di astrofili più vicino a casa vostra. A questo punto potete salire con gli ingrandimenti e vedrete come a partire da quell’ovale comincerete a distinguere l’anello di Saturno con al centro il disco del pianeta. Mano a mano che aumentate gli ingrandimenti, a seconda della calma atmosferica presente (fenomeno del seeing, vedi articolo “La scala Antoniadi”), comincerete a notare delle bande sul pianeta. Queste sono delle formazioni nuvolose presenti su Saturno così come su Giove. Se invece vi concentrerete sull’anello vedrete che non è continuo, ma interrotto da una banda nera. Questa è nota come divisione di Cassini ed è una regione meno densa dell’anello del pianeta. Tale formazione è dovuta all’influenza gravitazionale del satellite Mimas. E proprio a proposito di satelliti, Saturno è il pianeta che presenta il maggior numero di lune visibili attraverso un telescopio. Infatti oltre al già citato Titano, con un telescopio amatoriale è possibile osservare le lune Teti, Rea e Dione. Non siete ancora soddisfatti di quanto avete osservato? Non vi resta che acquistare un telescopio semi professionale che vi permetterà di osservare altre lune di Saturno quali la già citata Mimas, Giapeto, Encelado ed Iperione. Sul pianeta noterete dettagli sempre più sottili dell’atmosfera saturniana mentre gli anelli mostreranno divisioni sempre più sottili come la nota divisione di Encke (dovuta questa volta al satellite Pan).

Saturno è forse il pianeta del Sistema Solare la cui visione telescopica lascia il neofita a bocca aperta. Ma cosa dire della possibilità di riprendere il pianeta con una fotocamera digitale? La cosa è fattibile utilizzando la tecnica di proiezione d’oculare o tramite il metodo afocale. Quello che suggeriamo pero noi è l’utilizzo di webcam astronomiche (commerciali o autocostruite) che permettono di ottenere il massimo dal nostro telescopio (per maggiori informazioni si legga l’articolo “tecniche di ripresa del cielo notturno”). Vi segnaliamo inoltre la pagina fotografica dedicata a Saturno di ASTROtrezzi.it . Ovviamente è possibile riprendere Saturno nelle vicinanze (congiunzione) di altri oggetti celesti come ammassi stellari, galassie o nebulose. A volte come è successo il 22 maggio 2007, Saturno passa dietro la Luna (occultazione). Questo fenomeno tanto raro quanto bello da osservare al telescopio prevede che il pianeta con i suoi anelli e satelliti vada a tramontare/sorgere esattamente dietro a crateri, mari o monti lunari. Ad occhio nudo si vedrà Saturno sparire dietro la Luna e riapparire dopo un’ora circa dall’altro lato. La prossima occultazione di Saturno è prevista per il 25 ottobre 2014 in condizioni non molto favorevoli con la Luna bassa sull’orizzonte ovest.




C/2011 L4 (PAN-STARRS) – 21/03/2013

Telescopio o obiettivo di acquisizione (Imaging telescope or lens): Newton SkyWatcher BlackDiamond 200 mm f/4

Camera di acquisizione (Imaging camera): Canon EOS 500D (Rebel T1i) con filtro Baader (with Baader Filter) [4.7 μm]

Montatura (Mount): SkyWatcher NEQ6

Telescopio o obiettivo di guida (Guiding telescope or lens): non presente (not present)

Camera di guida (Guiding camera): non presente (not present)

Riduttore di focale (Focal reducer): non presente (not present)

Software (Software): IRIS + Adobe Photoshop CS2/CS6

Accessori (Accessories): correttore di coma Baader MPCC (coma corrector)

Filtri (Filter):  non presente (not present)

Risoluzione (Resolution): 4752 x 3168 (originale/original), 4194 x 2430 (finale/final)

Data (Date): 21/03/2013

Luogo (Location): Inverigo – CO, Italia (Italy)

Pose (Frames): 72 scatti a tempi diversi (72 shots at different exposure times) at/a 100-800 ISO.

Calibrazione (Calibration): 21 x 10 sec dark, 43 bias, 37 flat

Fase lunare media (Average Moon phase): 69.3%

Campionamento (Pixel scale):  1.21068 arcsec/pixel

Focale equivalente (Equivalent focal lenght): 800 mm

Note (note): Le stelle sono state elaborate con StarSpikes Pro 2 (stars spikes produced with StarSpikes Pro 2)

C/2011 L4 (PAN-STARRS) – 21/03/2013

riportiamo anche una copia dell’immagine dove vengono riportati i nomi e le magnitudini delle stelle più luminose. Le stelle più deboli riprese sono di magnitudine visuale +11.56 / we report also a copy of the picture with the name of the brightest stars. The faintest stars presents are of magnitude +11.56.

C/2011 L4 (PAN-STARRS), con i nomi delle stelle / with star's names - 21/03/2013

Per scaricare i file originali in formato PIC clicca qui (password richiesta) / Click here in order to download the original files in PIC format (password request)




C/2011 L4 (PAN-STARRS) – 15/03/2013

Telescopio o obiettivo di acquisizione (Imaging telescope or lens): Newton SkyWatcher BlackDiamond 150 mm f/5

Camera di acquisizione (Imaging camera): Canon EOS 500D (Rebel T1i) [4.7 μm]

Montatura (Mount): SkyWatcher NEQ6

Telescopio o obiettivo di guida (Guiding telescope or lens): non presente (not present)

Camera di guida (Guiding camera): non presente (not present)

Riduttore di focale (Focal reducer): non presente (not present)

Software (Software): IRIS + Adobe Photoshop CS6

Accessori (Accessories): correttore di coma Baader MPCC (coma corrector)

Filtri (Filter):  non presente (not present)

Risoluzione (Resolution): 4752 x 3168 (originale/original), 4594 x 2875 (finale/final)

Data (Date): 15/03/2013

Luogo (Location): Inverigo – CO, Italia (Italy)

Pose (Frames): 44 scatti a tempi diversi (44 shots at different exposure times) at/a 100 ISO.

Calibrazione (Calibration): 21 x 30 sec dark, 35 bias, 35 flat

Fase lunare media (Average Moon phase): 15.2%

Campionamento (Pixel scale):  1.288604 arcsec/pixel

Focale equivalente (Equivalent focal lenght): 750 mm

Note (note): composizione RRGB (RRGB composition).

C/2011 L4 (PAN-STARRS) - 15/03/2013

riportiamo anche un ritaglio dell’immagine originale (we report also a crop of the original picture):

C/2011 L4 (PAN-STARRS), crop - 15/03/2013

Per scaricare i file originali in formato PIC clicca qui (password richiesta) / Click here in order to download the original files in PIC format (password request)




DMSP F-18 – 18/10/2009

Varenna (LC), 18/10/2009 – Rocket Fuel Dump

L’immagine riprende un satellite militare meteorologico statunitense (DMSP F-18) ed il suo rocket (ovvero il lanciatore che permette di mandare i satelliti in orbita). Purtroppo il carburante presente nel rocket era eccessivo ed è quindi stato rilasciato nello spazio lasciando dietro a ciascuno dei due corpi una scia simile alla coda di una cometa. Inoltre il rilascio del carburante ha generato un anello grande quasi quanto metà volta celeste. Questo anello modificava la sua forma muovendosi nel cielo. Il fenomeno, molto raro, è stato osservato dall’Europa e fotografato da poche persone. Questa immagine è così stata pubblicata sul sito spaceweather.com (NASA) ed in molti altri siti internet internazionali. La stressa immagine è stata pubblicata anche sulla rivista italiana di astronomia amatoriale Coelum. Riportiamo di seguito la descrizione data a suo tempo:

“I was coming back by car from the usually Sunday trip when something like a bright comet appeared in the night sky. So, I stopped the car and took some photos of the strange phenomenon (photos were taken by hand without any tripod). The bright object was anticipated by a bright star with a tail. It was surrounded by a circular halo, that became an ellipse when it came close to the horizon. Canon EOS 40D, 23 sec. 3200 ISO (Ob. 18 mm, f/6.3)”

Rocket Fuel Dump - 18/10/2009 . Clicca qui per visualizzare l'immagine su spacewather.com




iOptron SkyTracker

Riportiamo di seguito i risultati di alcuni test effettuati con uno iOptron SkyTracker acquistato in data 10/02/2013 presso ARTESky. Ricordiamo al lettore che questa recensione non è generalizzabile e fa riferimento al solo modello testato. Davide Trezzi non è responsabile di un utilizzo proprio o improprio dello strumento in esame. Questo articolo non sostituisce la lettura obbligatoria del manuale di istruzioni.

LO STRUMENTO

Lo iOptron SkyTracker è confezionato in una scatola di cartone sigillata da nastro adesivo. Al suo interno troviamo una borsetta che contiene il manuale di istruzione, l’astroinseguitore (nel caso in esame di colore bianco) ed il cannocchiale polare opportunamente sigillato e contenuto in un’apposita tasca interna. Borsetta comodissima per l’eventuale trasporto dello strumento in completa sicurezza.Analizziamo ora l’astroinseguitore (Figura 1).

Figura 1: l’astroinseguitore iOptron SkyTracker.

Questo è costituito da un box metallico di dimensioni 153 x 104 x 58 mm dotato di una piccola bussola per l’individuazione veloce del nord (utile nel caso di riprese diurne o al tramonto). Inoltre sono presenti il tasto on/off, il tasto per l’inseguimento emisfero nord / emisfero sud ed il tasto per la velocità di inseguimento: 1x per le riprese di solo cielo, 0.5x per le riprese ambientate. Presente anche l’ingresso per attaccare l’astroinseguitore ad un’eventuale batteria esterna o rete elettrica (trasformatore non incluso).

Un coperchio di colore nero protegge il vano batterie. Sono necessarie quattro batterie di tipo AA, in grado di garantire un funzionamento della montatura per 24 ore a 20°C. Le pile vanno inserite con cura, seguendo le istruzioni riportate in lingua inglese nel manuale (sono comunque presenti molte illustrazioni). Il processo di sostituzione delle pile non è molto comodo e a mio avviso forse troppo delicato. Sul lato frontale è presente la vite a doppia faccia 1/4” – 3/8” che vi permette di collegare qualsiasi tipo di testa fotografica. Tale vite è fissata ad un disco a sua volta vincolato all’ingranaggio grazie a due manopole di fissaggio. Noi consigliamo vivamente l’utilizzo di teste a sfera. Questo per evitare troppi ingombri che potrebbero rendere la montatura cieca in alcune porzioni di cielo. Nel nostro caso abbiamo optato per una testa Manfrotto modello 494 RC2, piccola e dotata di frizione. La testa si avvita al perno fino a mandarla in battuta. Purtroppo non esistono viti di serraggio ma, dato il carico massimo dell’astroinseguitore pari a 3 kg, questo non comporta alcun rischio di rotazione della testa durante la ripresa. Ricordiamo infine che il carico massimo comprende anche il peso della testa, che nel caso in esame è pari a 320 g.

 Il box metallico presenta poi due fori: uno piccolo per un puntamento veloce del polo nord celeste (basta porre la stella polare nel centro del foro) ed uno di grandi dimensioni dove va inserito il cannocchiale polare. Inserite quindi in cannocchiale (dopo aver sistemato il fuoco e allentato la vite di serraggio) prestando attenzione a rimuovere il nastro adesivo protettivo presente sullo stesso, inserendolo rivolgendo il foro per l’ingresso della luce rossa generata dal led (posto in sede sull’astroinseguitore) verso il basso.

Facciamo notare come sia necessario spingere il cannocchiale polare sino a mandarlo in battuta. Il modello in esame presentava un piccolo gioco in grado di imprimere al cannocchiale una leggera rotazione. Questo difetto si traduce in un piccolo errore nell’allineamento polare dell’astroinseguitore.

Il box metallico è sostenuto da un sistema meccanico in grado di inclinarsi di un angolo pari alla latitudine del luogo di osservazione. È possibile ottimizzare l’inclinazione sul campo, ponendo la stella Polare nel campo di 6° del cannocchiale polare grazie all’opportuna manopola di regolazione. Il tutto è da farsi dopo aver messo in bolla il treppiedi. Quest’ultimo non è in dotazione con l’astroinseguitore e va quindi acquistato separatamente. Nell’acquisto va valutata la massima capacità di carico che non deve limitarsi al solo sistema camera + obiettivo ma deve includere anche il peso dell’astroinseguitore pari a 1100g (batterie escluse). Nel nostro caso abbiamo optato per un Manfrotto 055 X PRO B.

Unico difetto è che, durante l’allineamento con il polo celeste, se da un lato abbiamo la possibilità di variare l’altezza dell’astroinseguitore attraverso l’apposita manopola dall’altro non abbiamo la possibilità di regolarne l’azimuth a meno di spostare il cavalletto (che quindi non risulterà più in bolla) o applicare piccole torsioni al sistema.

Una volta centrato il polo celeste nel cannocchiale, a questo punto è necessario spostare la stella Polare nella corretta posizione ad una distanza di 40′ dal centro del cannocchiale indicato da un opportuno cerchio graduato. La posizione della stella Polare può essere determinata utilizzando l’applicazione iOptron Polar Scope per iPhone/iPad. Chi non possiede un iPhone/iPad, il manuale di istruzioni suggerisce di porre la stella Polare al centro. In realtà esistono programmi gratuiti in rete come http://www.polarfinder.com/ compatibile con MS Windows, Linux e MacOSX che, data la longitudine del posto di osservazione (potete ricavarla con il GPS o utilizzando google maps), è in grado di calcolare il punto dove posizionare la Polare nel reticolo.

Si è notato comunque che durante le fasi di manovra della testa a sfera l’astroinseguitore subisce piccoli spostamenti e quindi il puntamento polare può variare leggermente durante la nottata. In ogni caso questi spostamenti sono così limitati da non inficiare sulla qualità dell’inseguimento.

TEST SUL CAMPO

I test presentati in questo post sono stati effettuati da Sormano (CO) utilizzando una Canon EOS 500D modificata Baader. Scopo del test è valutare l’effettivo funzionamento dello strumento e la capacità di inseguimento in funzione della focale utilizzata. In particolare si sono utilizzati gli zoom Canon EF-S 18-55mm f/3.5-5.6 IS e Canon EF 70-300mm f/4-5.6 IS USM. Il secondo dei quali soffre di aberrazioni a seguito di un difetto dell’ottica (testato quella notte ed ora in riparazione).

La prima ripresa è stata effettuata a 45mm di focale con obiettivo chiuso a f/7 per ridurre il coma dello zoom comunque molto presente. Gli ISO sono stati impostati a 400. Tempo di esposizione 300 secondi (5 minuti), soggetto la costellazione di Orione. Come si vede dalla Figura 2 lo iOptron SkyTracker ha inseguito correttamente e le dimensioni delle stelle sono confrontabili con quelle riprese a 30 secondi di posa.

Figura 2: Ripresa di Orione a grande campo realizzata con l'astroinseguitore iOptron SkyTracker.

Seconda ripresa invece è stata effettuata in condizioni completamente differenti, ovvero non più grandangolari ma a focale spinta pari a 300mm. La ditta madre assicura un buon inseguimento fino a focali pari a 200/250 mm, quindi andando a 300mm siamo andati oltre al fine di scoprire cosa iOptron intende con inseguimento “buono”. Ecco quindi una ripresa della nebulosa di Orione ripresa ad f/6.4, sensibilità 400ISO e 300 secondi di posa. Come potete notare dalla Figura 3, lo scatto presenta un visibile mosso.

Figura 3: Nebulosa di Orione a 300mm di focale. Lo scatto da 5 minuti di posa mostra un mosso evidente.

A questo punto, con lo stesso setup ed impostazioni è stato rifatto lo scatto con un tempo di esposizione pari a 150 secondi (2 minuti e 30 secondi). In questo caso il mosso non è più presente e la posa è ben seguita (vedi Figura 4).

Figura 4: Nebulosa di Orione a 300mm di focale. Lo scatto da 2 minuti e mezzo di posa non mostra più il mosso evidente in Figura 3.

CONCLUSIONI

Possiamo quindi concludere che lo iOptron SkyTracker è un buon inseguitore con un prezzo finalmente adeguato allo strumento. L’inseguimento è risultato preciso per focali medio corte e discreto a focali lunghe. I difetti di progettazione sono limitati e non condizionano il risultato finale. Considerando che il tempo massimo di esposizione di una montatura modello EQ3.2 per focali pari a 300mm è di 3-4 minuti, il risultato di 2 minuti e mezzo ottenuto con l’astroinseguitore iOptron è da considerare più che soddisfacente. Inoltre lo strumento risulta molto trasportabile e lo stazionamento dello strumento è veramente veloce (meno di 10 minuti). La valutazione complessiva è quindi molto buona.




NGC 2246 – 03/03/2013

Telescopio o obiettivo di acquisizione (Imaging telescope or lens): Rifrattore ED (ED reftactor) Tecnosky Carbon Fiber 80mm f/7

Camera di acquisizione (Imaging camera): Canon EOS 500D (Rebel T1i) con filtro Baader (with Baader Filter) [4.7 μm]

Montatura (Mount): SkyWatcher NEQ6

Telescopio o obiettivo di guida (Guiding telescope or lens): Newton SkyWatcher BlackDiamond 150 mm f/5

Camera di guida (Guiding camera): Magzero MZ-5m B/W [5.2 μm]

Riduttore di focale (Focal reducer): riduttore/spianatore 0.8x (0.8x reducer/field flattener)

Software (Software): IRIS + Adobe Photoshop CS3/CS6

Accessori (Accessories): non presente (not present)

Filtri (Filter):  Astronomik UHC-E

Risoluzione (Resolution): 4752 x 3168 (originale/original), 4664 x 3107 (finale/final)

Data (Date): 03/03/2013

Luogo (Location): Sormano – CO, Italia (Italy)

Pose (Frames): 23 x 360 sec at/a 1600 ISO.

Calibrazione (Calibration): 13 x 360 sec dark, 105 bias, 106 flat

Fase lunare media (Average Moon phase): 60.7%

Campionamento (Pixel scale): 2.1758 arcsec/pixel

Focale equivalente (Equivalent focal lenght): 448 mm

Note (note): non presente (not present)

NGC 2246 - 03/03/2013

Per scaricare i file originali in formato PIC clicca qui (password richiesta) / Click here in order to download the original files in PIC format (password request)




C/2012 S1 (ISON) – 03/03/2013

Telescopio o obiettivo di acquisizione (Imaging telescope or lens): Rifrattore ED (ED reftactor) Tecnosky Carbon Fiber 80mm f/7

Camera di acquisizione (Imaging camera): CCD Atik 314L+ B/W [6.45 μm]

Montatura (Mount): SkyWatcher NEQ6

Telescopio o obiettivo di guida (Guiding telescope or lens): Newton SkyWatcher BlackDiamond 150 mm f/5

Camera di guida (Guiding camera): Magzero MZ-5m B/W [5.2 μm]

Riduttore di focale (Focal reducer): riduttore/spianatore 0.8x (0.8x reducer/field flattener)

Software (Software): IRIS + Adobe Photoshop CS6

Accessori (Accessories): non presente (not present)

Filtri (Filter):  Astronomik CCD L

Risoluzione (Resolution): 1391 x 1039

Data (Date): 03/03/2013

Luogo (Location): Sormano – CO, Italia (Italy)

Pose (Frames): 1 x 600 sec bin 1×1 a/at -10.0°C

Calibrazione (Calibration): non presente (not present)

Fase lunare media (Average Moon phase): 60.7%

Note (note): immagini in bianco e nero ed invertite per mostrare la cometa (picture in black and white and inverse in order to show the comet)

C/2012 S1 (ISON) - 03/03/2013

la versione inverita con label (the negative version with labels):

C/2012 S1 (ISON) versione invertita - 03/03/2013

Per scaricare i file originali in formato FIT clicca qui (password richiesta) / Click here in order to download the original files in FIT format (password request)




Pleiadi, Iadi e Giove – 02/03/2013

Telescopio o obiettivo di acquisizione (Imaging telescope or lens): Canon EF 70 – 300 mm f/4-5.6 IS USM utilizzato a 70 mm circa chiuso a f/8. (used at 70mm, f/8)

Camera di acquisizione (Imaging camera): Canon EOS 500D (Rebel T1i) con filtro Baader (with Baader Filter) [4.7 μm]

Montatura (Mount): iOptron SkyTracker su treppiede Manfrotto 055 X PRO B, testa Manfrotto mod. 494 RC2

Telescopio o obiettivo di guida (Guiding telescope or lens): non presente (not present)

Camera di guida (Guiding camera): non presente (not present)

Riduttore di focale (Focal reducer): non presente (not present)

Software (Software): IRIS + Adobe Photoshop CS3/CS6

Accessori (Accessories): non presente (not present)

Filtri (Filter):  non presente (not present)

Risoluzione (Resolution): 4752 x 3168 (originale/original), 4770 x 3178 (finale/final)

Data (Date): 02/03/2013

Luogo (Location): Sormano – CO, Italia (Italy)

Pose (Frames): 10 x 240 sec at/a 1600 ISO.

Calibrazione (Calibration): 5 x 240 sec dark, 54 bias, 51 flat

Fase lunare media (Average Moon phase): 72%

Campionamento (Pixel scale): 47943 sec / 3586 pixel = 13.3695 arcsec/pixel

Focale equivalente (Equivalent focal lenght): 73 mm

Note (note): non presente (not present)

Pleiadi, Iadi e Giove - 02/03/2013

postiamo anche la versione dove sono indicati i nomi degli ammassi aperti e le linee della costellazione / we also post a version of the picture with the names of the open cluster and constellation lines.

Pleiadi, Iadi e Giove - 02/03/2013

Per scaricare i file originali in formato PIC clicca qui (password richiesta) / Click here in order to download the original files in PIC format (password request)




M31 (NGC 224) – 24/11/2009

Sormano (CO), 24/11/2009 – M31

Singola posa effettuata con Canon EOS 40D + obiettivo Tamron CF 80-210 mm f/4.0 adaptall 2 utilizzato a 210 mm (adattatore Tamron-Canon fornito dalla ditta Coma). Tempo di esposizione 90 secondi a 3200 ISO. Posa non inseguita su montatura SkyWatcher EQ3.2.

 

 

M31 (NGC 224) - 24/11/2009




Orione – 24/11/2009

Sormano (CO), 24/11/2009 – Costellazione di Orione

Scatto singolo effettuato con Canon EOS 40D + Canon EF-S 18-55 mm IS utilizzato a 55 mm f/5.6. Tempo di esposizione 183 secondi a 800 ISO. Immagine non inseguita su montatura SkyWatcher EQ3.2

 

 

Orione - 24/11/2009




Cancro – 05/04/2010

Sormano (CO), 05/04/2010 – Costellazione del Cancro

Somma di 11 immagini da 50 secondi 1000 ISO + 40 bias + 19 dark + 30 flat effettuata con IRIS + Photoshop CS2.

Obiettivo di ripresa: Canon EF-S 18-55 mm IS utilizzato a 35 mm f/5.6 + Camera Canon EOS 40D. Ripresa non inseguita su montatura EQ 3.2

 

Cancro - 05/04/2010 . Nell'immagine è visibile anche il pianeta Marte




M44 (NGC 2632) – 31/03/2010

Briosco (MB), 31/03/2010 – M44 & Marte

31 Marzo 2010, 22.26 – 22.34 U.T.
Somma di 12 pose da 30 seconda a 1000 ISO elaborate con 40 offset/bias, 22 dark e 51 flat; effettuata con IRIS e Photoshop CS4. Camera Canon EOS 40D con zoom Canon EF 70 – 300 mm f/4-5.6 IS USM utilizzato a 100 mm chiuso a f/5.6.

 

M44 (NGC 2632) - 31/03/2010




15 Eunomia – 23/12/2011

Sormano (CO), 23/12/2011 – 15 Eunomia

Telescopio di guida: Newton SkyWatcher 150 mm f/5 + MagZero MZ-5m. Controllo ogni 1s con PHD Guiding.
Telescopio di ripresa: Rifrattore ED Tecnosky carbon fiber 80 mm f/7 + riduttore/spianatore 0.8x + filtro UHC-E + Canon EOS 500D modificata Baader. Controllo EOS utility.
Dati di ripresa: 14 pose da 10 minuti a 800 ISO (tot. 2.20h) + 3 dark + 30 bias + 30 flat (Geoptik flat generator). Elaborazione IRIS + Photoshop CS6. L’immagine originale è postata al post IC348.

15 Eunomia - 23/12/2011




1018 Arnolda – 29/08/2011

Passo del Mortirolo (BS), 29/08/2011 – 1018 Arnolda

Telescopio di guida: Ritchey–Chrétien 152 mm f/9 + MagZero MZ-5m. Controllo ogni 1s con PHD Guiding.
Telescopio di ripresa: Rifrattore ED Tecnosky carbon fiber 80 mm f/7 + riduttore/spianatore 0.8x + Canon EOS 500D. Controllo EOS utility.
Dati di ripresa: 15 pose da 6 minuti a 800 ISO (tot. 1.5h) + 10 dark + 56 bias + 57 flat (Geoptik flat generator, effettuati il giorno dopo). Elaborazione IRIS + Photoshop CS2. In figura è riportato un crop del moto dell’asteroide 1018 Arnolda. L’immagine completa è riportata nel post M45 (NGC 1432).

1018 Arnolda - 29/08/2011




4 Vesta – 05/04/2010

Sormano (CO), 05/04/2010 – 4 Vesta

Somma di 3 pose a tempi di esposizione ed ISO differenti, elaborate con 40 offset/bias, 19 dark e 41 flat; effettuata con IRIS e Photoshop CS4. Camera Canon EOS 40D con zoom Canon EF 70 – 300 mm f/4-5.6 IS USM utilizzato a 100 mm chiuso a f/5.6.

 

 

4 Vesta - 05/04/2010

Riportiamo un video che mostra il moto di 4 Vesta rispetto all’immagine ripresa il giorno 31/03/2010 da Briosco.

Il moto dell'asteroide 4 Vesta rispetto alle stelle fisse. Cliccare sull'immagine per far partire l'animazione.




4 Vesta – 31/03/2010

Briosco (MB), 31/03/2010 – 4 Vesta

Somma di 24 pose da 30 seconda a 1000 ISO elaborate con 40 offset/bias, 22 dark e 51 flat; effettuata con IRIS e Photoshop CS4. Camera Canon EOS 40D con zoom Canon EF 70 – 300 mm f/4-5.6 IS USM utilizzato a 100 mm chiuso a f/5.6.

 

 

4 Vesta - 31/03/2010

Riportiamo anche l’immagine in cui viene indicata la posizione dell’asteroide 4 Vesta rispetto alle stelle fisse.

La posizione dell'asteroide 4 Vesta rispetto alle stelle fisse