1

Luna – 28/04/2015

Telescopio o obiettivo di acquisizione (Imaging telescope or lens): Ritchey-Chrétien GSO 203 mm f/8

Camera di acquisizione (Imaging camera): QHY 5L-II-C [3.75 μm]

Montatura (Mount): SkyWatcher NEQ6

Telescopio o obiettivo di guida (Guiding telescope or lens): non presente (not present)

Camera di guida (Guiding camera): non presente (not present)

Riduttore di focale (Focal reducer): non presente (not present)

Software (Software): Registax6 + Photoshop CS6

Accessori (Accessories): non presente  (not present)

Filtri (Filter): non presente (not present)

Risoluzione (Resolution): 1280 x 960

Data (Date): 28/04/2015

Luogo (Location): Briosco – MB, Italia (Italy)

Pose (Frames): mosaico di 19 immagini, ciascuna somma di 500 frames

Calibrazione (Calibration): non presente (not present)

Fase lunare media (Average Moon phase): 76.0%

Campionamento (Pixel scale): 0.476296875 arcsec/pixel

Focale equivalente (Equivalent focal lenght): 1624 mm

Luna - 28/04/2015




Makemake – 14/04/2015

Telescopio o obiettivo di acquisizione (Imaging telescope or lens): Newton SkyWatcher BlackDiamond 200 mm f/5

Camera di acquisizione (Imaging camera): CCD Atik 383L+ B/W [5.4 μm]

Montatura (Mount): SkyWatcher NEQ6

Telescopio o obiettivo di guida (Guiding telescope or lens): Rifrattore acromatico (refractor) SkyWatcher 102mm f/5

Camera di guida (Guiding camera): Magzero MZ-5m B/W [5.2 μm]

Riduttore di focale (Focal reducer): non presente (not present)

Software (Software): PixInsight + Adobe Photoshop CS6

Accessori (Accessories): correttore di coma Baader MPCC MkIII (coma corrector)

Filtri (Filter): Astronomik LRGB + 2” IDAS LPS-D1

Risoluzione (Resolution): 3362 x 2504 (originale/original), 3362 x 2537 (finale/final)

Data (Date): 14/04/2015

Luogo (Location): Briosco (MB), Italia (Italy)

Pose (Frames): 5 x 600 sec bin 1×1 L, 1 x 300 sec bin 2×2 R, 1 x 300 sec bin 2×2 G, 1 x 300 sec bin 2×2 B a/at -7 °C

Calibrazione (Calibration): 9 x 600 sec bin 1×1 dark L, 9 x 300 sec bin 2×2 dark RGB, 15 bias 1 x 1, 10 bias 2 x 2, 15 flat L, 10 flat R , 10 flat G, 10 flat B.

Fase lunare media (Average Moon phase): 20.9%

Note (note): composizione LRGB. Problemi di ombra dell’otturatore nel flat / riduzione dei gradienti in post-produzione.

Makemake - 14/04/2015 | immagine a colori

Makemake - 14/04/2015 | B/N invertito

Makemake - 14/04/2015 | riduzione astrometrica

 




Luna – 21/04/2015

Telescopio o obiettivo di acquisizione (Imaging telescope or lens): Rifrattore ED (ED reftactor) Tecnosky Carbon Fiber 80mm f/7

Camera di acquisizione (Imaging camera): Canon EOS 700D [4.3 μm]

Montatura (Mount): SkyWatcher EQ3.2

Telescopio o obiettivo di guida (Guiding telescope or lens): non presente (not present)

Camera di guida (Guiding camera): non presente (not present)

Riduttore di focale (Focal reducer): non presente (not present)

Software (Software): Photoshop CS6

Accessori (Accessories): non presente  (not present)

Filtri (Filter): non presente

Risoluzione (Resolution): 5184 x 3456

Data (Date): 21/04/2015

Luogo (Location): Briosco – MB, Italia (Italy)

Pose (Frames): doppia esposizione (1/25 secondo e 15 secondi) a 100 ISO

Calibrazione (Calibration): non presente (not present)

Fase lunare media (Average Moon phase): 11.5%

Focale equivalente (Equivalent focal lenght): 560 mm

Luna - 15 secondi di posa a 100 ISO

Luna - 1/25 secondo di posa a 100 ISO

Luna e Aldebaran - 21/04/2015




M101 (NGC 5457) – 15/04/2015

Telescopio o obiettivo di acquisizione (Imaging telescope or lens): Newton SkyWatcher BlackDiamond 200 mm f/5

Camera di acquisizione (Imaging camera): CCD Atik 383L+ B/W [5.4 μm]

Montatura (Mount): SkyWatcher NEQ6

Telescopio o obiettivo di guida (Guiding telescope or lens): Rifrattore acromatico (refractor) SkyWatcher 102mm f/5

Camera di guida (Guiding camera): Magzero MZ-5m B/W [5.2 μm]

Riduttore di focale (Focal reducer): non presente (not present)

Software (Software): PixInsight + Adobe Photoshop CS6

Accessori (Accessories): correttore di coma Baader MPCC MkIII (coma corrector)

Filtri (Filter): Astronomik LRGB + 2” IDAS LPS-D1

Risoluzione (Resolution): 1681 x 1268 (originale/original), 1681 x 1268 (finale/final)

Data (Date): 15/04/2015

Luogo (Location): Sormano (CO), Italia (Italy)

Pose (Frames): 5 x 600 sec bin 2×2 L, 5 x 400 sec bin 3×3 R, 5 x 400 sec bin 3×3 G, 6 x 400 sec bin 3×3 B at -9 °C

Calibrazione (Calibration): 7 x 600 sec bin 2×2 dark L, 7 x 400 sec bin 3×3 dark RGB, 20 bias 2 x 2, 20 bias 3 x 3, 20 flat L, 20 flat R , 20 flat G, 20 flat B.

Fase lunare media (Average Moon phase): 11.9%

Note (note): composizione LRGB. Problemi di ombra dell’otturatore nel flat hanno ridotto la qualità dell’immagine.

M101 (NGC 5457) - 15/04/2015




M67 (NGC 2682) – 07/04/2015

Telescopio o obiettivo di acquisizione (Imaging telescope or lens): Newton SkyWatcher BlackDiamond 150 mm f/5

Camera di acquisizione (Imaging camera): CCD Atik 383L+ B/W [5.4 μm] @ -7.0°C

Montatura (Mount): SkyWatcher NEQ6

Telescopio o obiettivo di guida (Guiding telescope or lens): Rifrattore acromatico SkyWatcher 102mm f/5

Camera di guida (Guiding camera): Magzero MZ-5m B/W [5.2 μm]

Riduttore di focale (Focal reducer): non presenti (not present)

Software (Software): PixInsight 1.8 + Adobe Photoshop CS6

Accessori (Accessories): correttore di coma Baader MPCC MkIII (Baader MPCC coma corrector)

Filtri (Filter): 2” Astronomik CCD R,G,B

Risoluzione (Resolution): 3362 x 2504 (originale/original), 3338 x 2507(finale/final)

Data (Date): 07/04/2015

Luogo (Location): Briosco – MB, Italia (Italy)

Pose (Frames): 10 x 100 sec bin 1×1 R, 10 x 100 sec bin 1 x 1 G, 10 x 100 sec bin 1 x 1 B

Calibrazione (Calibration): 10 x 100 sec bin 1×1 dark, 15 bias, 14 flat R, 16 flat G e 14 flat B

Fase lunare media (Average Moon phase): 89.1%

Campionamento (Pixel scale):  2.9510652 arcsec/pixel

Focale equivalente (Equivalent focal lenght): 750 mm

Note (note): Composizione RGB (RGB composition)

M67 (NGC 2682) - 07/04/2015




M97 (NGC 3587) – 09/04/2015

Telescopio o obiettivo di acquisizione (Imaging telescope or lens): Ritchey-Chrétien GSO 203 mm f/8

Camera di acquisizione (Imaging camera): CCD Atik 383L+ B/W [5.4 μm] @ -7.0°C

Montatura (Mount): SkyWatcher NEQ6

Telescopio o obiettivo di guida (Guiding telescope or lens): Rifrattore acromatico SkyWatcher 102mm f/5

Camera di guida (Guiding camera): Magzero MZ-5m B/W [5.2 μm]

Riduttore di focale (Focal reducer): non presenti (not present)

Software (Software): PixInsight 1.8 + Adobe Photoshop CS6

Accessori (Accessories): ruota portafiltri / filter wheel ATIK EFW2 USB

Filtri (Filter): 2” Astronomik CCD L, R, G, B

Risoluzione (Resolution): 1681 x 1252 (originale/original), 1681 x 1268 (finale/final)

Data (Date): 09/04/2015

Luogo (Location): Sormano – CO, Italia (Italy)

Pose (Frames): 4 x 600 sec bin 2×2 L, 2 x 400 sec bin 3×3 R, 2 x 400 sec bin 3×3 G, 2 x 400 sec bin 3×3 B

Calibrazione (Calibration): 4 x 600 sec bin 2×2 dark, 20 bias bin 2×2, 20 flat L, 9 x 400 sec bin 3×3 dark, 20 bias bin 3×3, 20 flat R, 20 flat G, 20 flat B

Fase lunare media (Average Moon phase): 63.0%

Campionamento (Pixel scale):  0.693058 arcsec/pixel

Focale equivalente (Equivalent focal lenght): 1624 mm

Note (note): Composizione LRGB / LRGB composition

M97 (NGC 3587) - 09/04/2015




Luna – 01/04/2015

Telescopio o obiettivo di acquisizione (Imaging telescope or lens): Rifrattore ED (ED reftactor) Tecnosky Carbon Fiber 80mm f/7

Camera di acquisizione (Imaging camera): Imaging Source DBK31.AU03 colori / color [4.65 μm]

Montatura (Mount): SkyWatcher NEQ6

Telescopio o obiettivo di guida (Guiding telescope or lens): non presente (not present)

Camera di guida (Guiding camera): non presente (not present)

Riduttore di focale (Focal reducer): non presente (not present)

Software (Software): Registax5/6 + PixInsight

Accessori (Accessories): non presente  (not present)

Filtri (Filter): Astronomik IR-cut

Risoluzione (Resolution): 1024 x 768

Data (Date): 01/04/2015

Luogo (Location): Briosco – MB, Italia (Italy)

Pose (Frames): mosaico di tre immagini, ciascuna somma di 1000 frames

Calibrazione (Calibration): non presente (not present)

Fase lunare media (Average Moon phase): 94.0%

Campionamento (Pixel scale): 1.7127 arcsec/pixel

Focale equivalente (Equivalent focal lenght): 560 mm

Luna - 01/04/2015




Il guadagno di una camera digitale

Negli ultimi anni, le maggiori ditte produttrici di fotocamere digitali (DSLR) stanno combattendo forsennatamente per aggiudicarsi il sensore con maggiore numero di pixel ed elettronica in grado di fornire il maggiore numero di ISO. Proprio per questo motivo abbiamo deciso di affrontare per l’ennesima volta l’argomento ISO, ovvero “il guadagno di una camera digitale”. Altri articoli presenti su questo sito sono il significato degli ISO nelle fotocamere digitalie gli ISO e l’immagine astronomica. ASTROtrezzi ha approfondito in dettaglio il processo che porta, partendo dai “fotoni” (luce) proveniente da oggetti celesti lontani nello spazio e nel tempo, ad avere una bellissima immagine astronomica sul monitor di casa nostra. Il guadagno di una camera digitale (e quindi vedremo gli ISO) si trova tra la generazione del segnale da parte del sensore CCD o CMOS (vedi l’articolo La generazione del segnale) ed il conseguente processo di digitalizzazione dello stesso (vedi l’articolo ADC: dal mondo analogico a quello digitale). Riassumiamo quindi brevemente cosa succede: il nostro raggio di luce (fotone) prodotto in una lontana galassia, viaggia per milioni di anni fino a raggiungere la nostra ottica (obiettivo e telescopio) che lo devia facendolo incidere su un pixel del nostro sensore. Qui, con una certa probabilità dettata dall’efficienza quantica (vedi l’articolo Efficienza quantica) viene convertito in elettroni. Dato un certo tempo di esposizione, la quantità di carica raccolta dal pixel viene amplificata e quindi digitalizzata da un componente elettronico noto come ADC (Analog to Digital Converter). Questo processo di amplificazione permette di ottimizzare la dinamica del sistema ovvero far si che la fotocamera possa raccogliere il maggior numero di sfumature di grigio (ricordiamoci che il sensore è in bianco e nero, vedi per esempio l’articolo costruire un’immagine a colori).

Supponiamo come esempio di lasciare esposto il nostro sensore per un certo tempo (tempo di esposizione) alla pioggia di fotoni cosmici. Una volta passato questo intervallo di tempo andiamo, come dei contadini, a raccogliere il numero di elettroni accumulati in ciascun pixel. Supponiamo che questi variano da 0 (cielo nero) a N (nucleo della galassia), rimanendo sempre al di sotto della massima Full Well Capacity ossia il massimo numero di elettroni immagazzinabili in un singolo pixel. A questo punto il nostro segnale dovrà essere digitalizzato a 14bit (ovvero convertito in 16384 differenti toni di grigio, misurati in ADU dove 0 ADU è il nero e 16383 ADU è il bianco). Prima della digitalizzazione però il segnale viene moltiplicato/diviso per un certo coefficiente detto guadagno della camera (G) e misurato in elettroni (e-) per ADU (alcuni definiscono guadagno il rapporto inverso ovvero ADU per e-). Quindi il numero di ADU in uscita dalla nostra camera andrà da 0 (per 0 elettroni prodotti nel sensore) a N/G. Ovviamente G < 1 significa che il segnale viene amplificato mentre G > 1 ridotto. Esiste una correlazione tra guadagno e ISO che però dipende dalla fotocamera digitale considerata (il guadagno è scelto in modo di ottimizzare la dinamica del sensore). Nel caso della Canon EOS 40D, il guadagno varia da 3.40 e-/ADU a 100 ISO a 0.21 e-/ADU a 1600 ISO.

Supponiamo quindi di aver raccolto con la nostra esposizione un numero di elettroni pari a 20000, allora questi corrisponderebbero a 5882 ADU a 100 ISO e 95238 ADU a 1600 ISO. Come si vede nel primo caso stiamo utilizzando il 36% della dinamica, mentre nel secondo caso, tutti i pixel che hanno collezionato più di 3440 elettroni appariranno come bianchi (16383 ADU) in quanto mandano in saturazione l’ADC. Ecco quindi che nel secondo caso l’immagine risulterà bruciata ovvero perdiamo informazioni sulle sfumature dei bianchi.

Abbiamo qui imparato una cosa molto importante: il guadagno non aumenta la sensibilità del sensore. Quest’ultimo infatti agisce solo al termine della raccolta della luce e pertanto non influenza la capacità o meno del sensore di immagazzinare i fotoni. Quindi il numero di fotoni raccolti da una CCD astronomica o DSRL è indipendente dal numero di ISO utilizzati ma è legato unicamente al tempo di esposizione e alle caratteristiche dell’ottica (rapporto focale). Chiamare (come si fa abitualmente) gli ISO sensibilità è quanto di più fuorviante si possa pensare. Ma allora come agiscono gli ISO sulle nostre immagini astronomiche?

Prima di tutto dobbiamo chiederci quale è il tempo di esposizione che abbiamo a nostra disposizione. Ricordiamo ancora una volta come quest’ultimo sia il parametro fondamentale della nostra ripresa astronomica. Supponiamo di avere un tempo t massimo dettato da vari fattori (tempo a disposizione, rischio meteo o inquinamento luminoso, qualità di inseguimento della montatura, numero di scatti che vogliamo mediare …). Andiamo quindi a misurare quanti elettroni riusciamo a collezionare in questo tempo utilizzando la nostra ottica (obiettivo fotografico o telescopio ad un certo rapporto focale fissato). Per fare ciò impostiamo gli ISO al minimo. Se già con gli ISO al minimo la nostra foto risulta già in saturazione (perdiamo informazione sui bianchi) allora sarà necessario abbassare il tempo di esposizione, altrimenti dovremo modificare gli ISO in modo che la nostra dinamica venga completamente coperta dai 16 bit dell’ADC. In figura 1 vediamo l’effetto di un’immagine che non sfrutta la dinamica, che la sfrutta appieno o va in saturazione.

Figura 1: (A) immagine che non sfrutta appieno la dinamica, (B) immagine corretta, (C) immagine in saturazione

 

Analizzando questa figura notiamo un problema tanto importante in astronomia quanto in fotografia tradizionale. Nella nostra immagine abbiamo sia parti deboli (nebulosità) caratterizzate da un numero esiguo di elettroni accumulati nel pixel che regioni luminose come le stelle, al limite della saturazione già a bassi valori di ISO. Come fare ad ottenere quindi immagini corrette dove le stelle luminose non vanno in saturazione e le deboli nebulosità possano emergere?

La risposta è ovviamente semplice dal punto di vista teorico quanto complessa da quello sperimentale: aumentare il numero di ADU ossia il numero di bit dell’ADC. Questa è la soluzione che in astronomia è stata affrontata con le camere CCD dedicate che lavorano infatti con ADC a 16 bit e non a 14 bit come le DSLR tradizionali. Il futuro delle reflex sarà quello di avere dinamiche sempre superiori in modo che ad un certo valore di ISO sarà possibile ottenere sfumature di neri e bianchi che poi verranno sfruttare in post-produzione al fine di ottenere immagini corrette.

In assenza di alti bit, l’unica possibilità è fare una doppia esposizione ovvero una a bassi ISO per le stelle ed una ad alti ISO per la debole nebulosità.Questa ultima frase potrebbe trarre alle sbagliate conclusione che aumentando gli ISO vediamo gli oggetti più deboli e quindi aumentiamo la sensibilità della camera. Come detto in precedenza questo non è vero. Alzare gli ISO vuol dire semplicemente “spalmare” il segnale sulla dinamica fornita dall’ADC. In questo processo non solo andremo ad aumentare il segnale (presente ed indipendente dagli ISO) ma anche il rumore.

Quindi riassumendo le migliori condizioni di lavoro sarebbero tempi lunghi e bassi ISO o in mancanza di tempo ISO adatti ad ottimizzare la dinamica del soggetto della ripresa (nebulose, galassie o ammassi). Il tutto diventerebbe ottimale se agli scatti deepsky si aggiungesse uno scatto “veloce” ottimizzato sulle stelle di campo in modo da salvarne i colori.

Questo ovviamente in un mondo idilliaco. Infatti se alti ISO significa alto rumore elettronico, lunghi tempi di esposizione significa alto rumore termico. Il secondo può essere eliminato grazie all’utilizzo del master dark frame, mentre il primo sommando più scatti. Ecco quindi l’amletico dilemma: meglio tanti scatti ad alti ISO o pochi scatti a bassi ISO? Se si considera un intervallo di tempo determinato (la notte astronomica), allora tenuto conto del tempo necessario per effettuare i dark frame, è meglio effettuare molti scatti a elevati valori di ISO, come dimostrato nell’articolo gli ISO e l’immagine astronomica. Questo ovviamente a patto che il rumore introdotto nell’amplificazione del segnale (ISO) sia casuale. Questo è vero generalmente per reflex semi-professionali o professionali. Per le reflex non professionali consigliamo un range di ISO compresi tra 400 e 800 ISO. Infine, nel caso di fotocamere raffreddate (CentralDS o CCD astronomiche), immagini a lunga posa risultano prive di rumore termico e pertanto si consigliano tempi di esposizione lunghi e valori di ISO bassi. Riportiamo a titolo di esempio in figura 2 il risultato del test riportato nell’articolo gli ISO e l’immagine astronomica.

Figura 2: Confronto tra la somma rispettivamente di 4 immagini da 8 minuti a 200 ISO e 30 immagini da 1 minuto a 1600 ISO.

Facciamo inoltre notare come, in assenza di scatti multipli (e quindi riduzione del rumore elettronico presente negli scatti ad alti ISO), l’utilizzo di tempi di esposizione lunghi e bassi valori di ISO è consigliata. Questa è la condizioni standard della fotografia tradizionale.

Concludendo quindi: il segnale astronomico (numero di fotoni che incidono sul pixel) non dipende dal numero di ISO utilizzati ma è funzione del tempo di esposizione. Maggiore sarà il tempo di esposizione e maggiore saranno le informazioni che andremo a raccogliere. A questo punto aspetta all’astrofotografo cercare di non perdere queste preziose informazioni scegliendo il valore di ISO più adatti. Questi dipenderanno dalla luminosità dell’oggetto, dal tempo a disposizione per effettuare la/le posa/e, dalla possibilità di effettuare multipli scatti, dal rumore dell’ADC (casuale o no?), da rumore termico dalla dinamica dell’ADC (14 o 16 bit). Figura 2 mostra come, seppur l’immagine a sinistra sia stata ottenuta esponendo per 8 minuti, questa sia stata distrutta dall’eccessivo rumore termico. Infatti raccogliendo meno informazioni (1 minuti) ma ottimizzando il valore degli ISO (elevati a patto di avere multipli scatti) si è riusciti a spremere al massimo l’informazione ottenendo un risultato analogo in termini di informazioni e superiore in termini di rumore.




Eclissi di Sole – 20/03/2015

Telescopio o obiettivo di acquisizione (Imaging telescope or lens): Newton SkyWatcher BlackDiamond 150 mm f/5

Camera di acquisizione (Imaging camera): Canon EOS 500D (Rebel T1i) modificata Baader (Baader modded) [4.7 μm]

Montatura (Mount): SkyWatcher NEQ6

Telescopio o obiettivo di guida (Guiding telescope or lens): non presente (not present)

Camera di guida (Guiding camera): non presente (not present)

Riduttore di focale (Focal reducer): non presente (not present)

Software (Software): Adobe Photoshop CS6

Accessori (Accessories): correttore di coma Baader MPCC (coma corrector)

Filtri (Filter):  Filtro in Astrosolar autocostruito (homemade Astrosolar filter)

Risoluzione (Resolution): 4752 x 3168 (originale/original)

Data (Date): 20/03/2015

Luogo (Location): Garlasco – PV, Italia (Italy)

Pose (Frames): vari scatti tra 1/250 e 1/320 secondo a 100 ISO. (different shots at 100 ISO)

Calibrazione (Calibration): non presente (not present)

Fase lunare media (Average Moon phase): 0.0%

Campionamento (Pixel scale): 1.2797 arcsec/pixel

Focale equivalente (Equivalent focal lenght): 750 mm

Note (note): riportiamo in seguito una composizione artistica dell’eclissi (formato a piena risoluzione all’indirizzo https://www.astrotrezzi.it/photography/solar_eclipse.jpg) ed i singoli scatti in HD. La sequenza completa in formato JPEG ad alta risoluzione, minuto per minuto, è disponibile come file ZIP (516 Mb). All’indirizzo http://youtu.be/l-6H1OM88KA inoltre il video completo dell’eclissi parziale di Sole mentre all’indirizzo http://youtu.be/cFWsGEltNlY l’eclissi della macchia #2303.

Eclissi parziale di Sole - 20/03/2015 . Immagine ad alta risoluzione all'indirizzo https://www.astrotrezzi.it/photography/solar_eclipse.jpg

Eclissi parziale di Sole (ore 9.33) - 20/03/2015

Eclissi parziale di Sole (ore 9.43) - 20/03/2015

Eclissi parziale di Sole (ore 10.03) - 20/03/2015

Eclissi parziale di Sole (ore 10.32) - 20/03/2015

Eclissi parziale di Sole (ore 11.03) - 20/03/2015

Eclissi parziale di Sole (ore 11.23) - 20/03/2015

Eclissi parziale di Sole (ore 11.33) - 20/03/2015

Infine abbiamo effettuato il seguente “esercizio”: per ciascuno scatto ripreso durante il periodo dell’eclissi parziale, abbiamo calcolato il valore medio (su 14 bit) dei pixel. Il valore, misurato in ADU, deve essere una funzione con un minimo al momento del massimo d’eclissi ovvero quando il Sole (pixel bianchi) viene sostituito in parte dalla Luna (pixel neri). Il risultato, riportato nella figura sottostante, dimostra come il massimo d’eclissi si sia verificato circa un’ora dopo le 9.30, ovvero intorno alle 10.30, come previsto (orario esatto 10.32, vedi approfondimento).

Grafico della media dei pixel (in ADU a 14 bit) in funzione del tempo.




Progetto RadioASTRO80

Nell’articolo Radioastronomia a microonde (10-12 GHz), abbiamo introdotto l’importanza della Radioastronomia e l’opportunità che questa offre a noi astrofili di accedere ai misteri più profondi del Cosmo. In questo articolo invece ci dedicheremo al progetto RadioASTRO80, ovvero la costruzione di un vero e proprio radiotelescopio amatoriale nel range delle microonde (10-12 GHz). Ricordo che ASTROtrezzi non è responsabile di un qualsiasi danno a strumentazione e/o persone a seguito delle modifiche qui riportate.

Iniziamo pertanto con identificare quali sono i processi chiave che portano ad una “osservazione” radioastronomica. Prima di tutto dobbiamo identificare una sorgente, possibilmente astronomica, di onde radio (nel nostro caso microonde) sufficientemente intensa in modo da poter testare con semplicità il nostro strumento. Come per la luce visibile, anche nelle microonde, la sorgente astronomica più luminosa del cielo è il Sole. Infatti, comportandosi come quello che i fisici chiamano “corpo nero” (che per il Sole potrebbe sembrare una contraddizione), il Sole non emette luce solo nel visibile ma anche in una vasta gamma di radiazioni alcune delle quali raggiungono la superficie terrestre come l’infrarosso, le microonde o le onde radio. A questo punto, l’onda a microonde che arriva dal Sole deve essere raccolta da uno strumento ottico e convertita in un segnale elettrico. Per quanto riguarda la luce visibile, è l’occhio a svolgere questa funzione grazie a coni e bastoncelli in grado di convertire la luce in impulsi nervosi che attraverso il nervo ottico raggiungeranno il nostro cervello. Per le microonde e onde radio, l’occhio viene sostituito dall’antenna. L’antenna astronomica è praticamente identica a quella che utilizziamo per ricevere ad esempio la radio, la TV o i cellulari. Tutte queste tecnologie infatti utilizzando le onde radio come mezzo di comunicazione per trasportare i segnali più svariati. La forma e la tipologia di antenna dipende dalla lunghezza d’onda e quindi dal tipo di radiazione da captare. In particolare le antenne per la TV satellitare, dette generalmente parabole, sono in grado di ricevere segnali radio tra 10 e 12 GHz (microonde). Pertanto puntando un’antenna TV satellitare verso una sorgente astronomica che emette microonde con frequenza compresa tra 10 e 12 GHz, questa emetterà un segnale elettrico proporzionale all’intensità dell’onda ricevuta. Il debole segnale prodotto dall’antenna viene subito amplificato e abbassato in frequenza (dalle decine di GHz al centinaio di MHz) attraverso un componente elettronico noto come Low Noise Block converter (LNB). Al fine di non ottenere un segnale di scarsa qualità, il LNB deve essere poco rumoroso e pertanto deve avere il numero di dB associati al rumore il più basso possibile. Questo mediamente è compreso tra 0.1 ed 1.0 e pertanto LNB da 0.1 o 0.2 dB sono più che sufficienti per costruire un radiotelescopio amatoriale. Il sistema di antenna parabolica da 80 cm e LNB da 0.1 dB di rumore (38.8 dB di guadagno) ha un prezzo di circa 20 euro. A questo punto avete il vostro segnale radio amplificato dal LNB. Con questo potete sbizzarrirvi costruendo sistemi sempre più complessi. Il progetto RadioASTRO80 ne include tre, che funzionano contemporaneamente offrendo al radiotelescopio amatoriale, la massima operatività. In seguito andremo ad analizzarne uno alla volta, partendo dal più semplice ed economico arrivando al sistema più complesso (e ovviamente costoso).

MISURA AUDIO DI UN SEGNALE RADIOASTRONOMICO

La cosa più semplice che si può fare un segnale radioastronomico è quello di trasformarlo in un segnale acustico. Per fare ciò ci si può avvalere di una tecnologia economica, presente sul mercato per fini ovviamente diversi da quello astronomico ovvero il satellite finder. Questo strumento, che in italiano suonerebbe come “il cercatore di satelliti” permette, una volta collegato al sistema antenna + LNB, di identificare un satellite TV emettendo un segnale tanto più intenso quanto più intenso è il segnale raccolto dall’antenna. Questo garantisce un comodo ed economico puntamento delle antenne paraboliche. Ma per noi radioastronomi amatoriali, il satellite finder è un generatore di suoni che sono tanto più acuti quanto intensa è la radiosorgente astronomica che andiamo a puntare. Quindi non ci resta che andare a comprare un satellite finder, del costo di circa 10 euro, attaccarlo all’uscita del LNB e puntare l’antenna verso il Sole. Sentiremo un segnale che aumenterà di intensità finché il Sole non entrerà al centro del campo visivo dell’antenna. In questo modo possiamo puntare la parabola alla destra del Sole, ed “ascoltarne” il suo transito. Questo è il sistema più semplice per costruirsi un radiotelescopio amatoriale. Dobbiamo comunque riportare un problema connesso al satellite finder. Questo oggetto è pensato per essere collegato al decoder della TV satellitare, il quale fornisce in uscita una tensione di 15V, utile per alimentare il satellite finder e l’LNB. Purtroppo essendo il nostro utilizzo astronomico, se vogliamo svincolarci dalla presenza del decoder TV, è necessario fornire al satellite finder ed all’LNB una tensione esterna. Questa può essere fornita o tramite un convertitore 220 V AC (alternata) in 15 V DC (continua) o tramite un pacco batterie costituito da due batterie da 9V. Seppur quest’ultima configurazione fornisce una corrente continua da 18V, questa è supportata dal sistema anche se la tensione massima consigliata è di 17V. In ogni caso preferiamo l’utilizzo di un convertitore AC-DC in quanto la stabilità di amplificazione dipende dalla stabilità dell’alimentatore, garantita maggiormente dalla rete elettrica rispetto alle normali batterie.

La tensione andrà portata all’ingresso “decoder TV” del satellite finder. L’elettronica interna del satellite finder con relativi ingressi LNB e decoder TV sono mostrati in Figura 1.

Figura 1: l’elettronica interna del satellite finder.

MISURA ELETTRICA DI UN SEGNALE RADIOASTRONOMICO

Il satellite finder però non genera solo un segnale audio, ma la stessa tensione che alimenta il “cicalino”, permette ad un’asticella analogica di muoversi su una scala graduata la quale quantifica l’intensità del segnale a microonde (vedi Figura 2).

Figura 2: l’asta graduata (da 1 a 10) dell’intensità del segnale

Se il segnale risulta troppo debole, sia dal punto di vista audio che visivo (asticella segna valori bassi tipo 1 o 2), è possibile amplificare il segnale agendo sulla manopola graduata presente sul satellite finder (Vedi figura 2). Dal punto di vista elettronico, il satellite finder acquisisce il segnale dal LNB, lo amplifica ulteriormente producendo una tensione massima di 500 mV in grado di alimentare contemporaneamente il cicalino e l’asta graduata. Questo segnale elettrico compreso tra 0 e 500 mV può essere estratto dai contatti dell’asticella graduata (vedi Figura 1) e misurato con un tester o portato in ingresso della porta microfono di un PC. Noi consigliamo comunque di utilizzare un tester, più sicuro in quanto prima di connettere la tensione del satellite finder al PC bisognerebbe valutarne l’accoppiamento. Grazie a questo sistema possiamo quantificare le nostre osservazioni ottenendo alla fine una misura in tensione del nostro segnale radioastronomico.

DIGITALIZZAZIONE DEL SEGNALE RADIOASTRONOMICO

Il segnale in tensione generato dal satellite finder e compreso tra 0 e 500 mV può essere amplificato ulteriormente grazie all’utilizzo di un amplificatore operazionale (a singola alimentazione 0, +V e non ad alimentazione duale). Questo può essere alimentato con una singola batteria a 9 V ed utilizzando delle resistenze opportune permette di amplificare il nostro segnale di tensione di un fattore 10, ottenendo quindi all’uscita del sistema satellite finder + amplificatore operazionale una tensione variabile tra 0 V (assenza di segnale) e + 5 V (massimo segnale). Agendo sull’amplificatore del satellite finder ovviamanete il massimo segnale può essere fatto variare da +5 V a qualche millivolt. Consigliamo come massima tensione di uscita un valore pari a circa +4 V. Questo mette in sicurezza il sistema di digitalizzazione che ora andremo a descrivere.

Al fine di quantificare e registrare il nostro segnale radioastronomico possiamo digitalizzare il segnale analogico di tensione prodotto dal sistema satellite finder + amplificatore operazionale. Per fare ciò ci serve un Analog to Digital Converter (ADC) ovvero un componente elettronico in grado di trasformare un segnale di ampiezza X in un numero digitale memorizzabile su PC pari a X. L’ADC più economico e che permette di interfacciarsi con un PC in modo semplice è Arduino Uno. Questo costa circa 20 euro e necessita di un cavo USB ed un PC per la memorizzazione dei dati (si può usare anche un shield con scheda SD incorporata). Arduino vuole in ingresso un segnale analogico di tensione massima pari a +5 V (da qui il valore massimo consigliato di +4 V) e fornisce un segnale digitalizzato a 10 bit con una frequenza di campionamento di 60 Hz. Questo significa che se in ingresso forniamo un segnale di ampiezza massima pari a +4 V, Arduino produrrà un segnale digitale (numero) con risoluzione 4 mV, 60 volte al secondo. Questi dati verranno registrati su disco fisso in formato TXT e potranno essere utilizzati per una futura analisi. Il programma che si occupa della scrittura su file è detto radioastroino_v1.pde ed è stato sviluppato da ASTROtrezzi in Processing 2. Il listato è riportato qui sotto:

import processing.serial.*;

import java.text.*;

import java.util.*;

import cc.arduino.*;

 

Arduino arduino;

int analogPin = 0;

int value = 0;

 

PrintWriter output;

DateFormat fnameFormat= new SimpleDateFormat(“yyMMdd_HHmm”);

DateFormat timeFormat = new SimpleDateFormat(“hh:mm:ss”);

String fileName;

Serial myPort;

char HEADER = ‘H’;

 

void setup(){

 arduino = new Arduino(this, Arduino.list()[0], 57600);

 Date now = new Date();

 fileName = fnameFormat.format(now);

 output = createWriter(fileName + “.txt”);

}

 

void draw(){

 String time; 

 String timeString = timeFormat.format(new Date());

 value = arduino.analogRead(analogPin);

 output.println(timeString + ” ” + value);

}

 

void keyPressed(){

    output.flush();

    output.close();

    exit();

}

Bisogna ricordare che prima di lanciare questo programma è necessario eseguire la scrittura sul firmware di Arduino eseguendo il programma Examples > Firmata > StandardFirmata in linguaggio Arduino.

Se un segnale radioastronomico non è particolarmente veloce (come un transito che solitamente dura una decina di minuti), allora è possibile aumentare la risoluzione del nostro segnale digitale mediando il valore in tensione su un secondo di presa dati. Il programma che realizza l’analisi dei dati è detto radioastroino.cpp ed è stato sviluppato da ASTROtrezzi in C++ come macro per CERN ROOT. Il listato è riportato qui sotto.

{

cout << “RADIOASTROINO on CERN/ROOT” << endl;

ifstream fradioastroino;

fradioastroino.open (“radioastroino.txt”);

int i, N;

string timefile;

float adu[60];

float average[3600];

float errorx[3600];

float errory[3600];

float time[3600];

N = 0;

for(i = 0; i < 60; i++) adu[i] = 0;

for(i = 0; i < 3600; i++) {average[i] = 0; errorx[i] = 0; errory[i]=((1.0/sqrt(60.0))/1023.0)*5.0; time[3600];}

while(!fradioastroino.eof())

   {

   for(i = 0; i < 60; i++)

      {

      fradioastroino >> timefile;

      fradioastroino >> adu[i];

      average[N] = average[N] + adu[i];

      }

   average[N] = average[N] / 60;

   cout << time [N] << ” ” << average[N] << endl;

   N = N+1;

   time[N] = N; //seconds from start

   }

gr = new TGraphErrors(N,time,average,errorx,errory);

gr->SetTitle(“RadioASTROino”);

gr->GetXaxis()->SetTitle(“Time (sec)”);

gr->GetYaxis()->SetTitle(“ADU”);

gr->SetMarkerStyle(8);

gr->Draw(“ALP”);

fradioastroino.close();

}

Il software, interamente sviluppato da ASTROtrezzi è open source e pertanto può essere distribuito e modificato. Consigliamo comunque la segnalazione all’indirizzo davide@astrotrezzi.it . Il sistema antenna + LNB + satellite finder (alimentato esternamente da rete elettrica domestica) + amplificatore operazionale + Arduino + PC, detto RadioASTRO80 è mostrato in Figura 3. Questo può essere montato comodamente su una montatura equatoriale. Nel caso di RadioASTRO80 abbiamo utilizzato una SkyWatcher NEQ6 con attacco Losmandy.

Figura 3: il progetto RadioASTRO80 in funzione.

Il risultato ottenuto dal primo test di RadioASTRO80, consistente nella misura del transito solare, è mostrato in Figura 4.

Figura 4: transito solare “osservato” con RadioASTRO80 ed elaborato con radioastroino.cpp.




M35 (NGC 2168) – 22/02/2015

Telescopio o obiettivo di acquisizione (Imaging telescope or lens): Rifrattore Tripletto APO FPL53 (APO reftactor triplet FPL53) Tecnosky 80mm f/6

Camera di acquisizione (Imaging camera): Canon EOS 500D (Rebel T1i) con filtro Baader (with Baader Filter) [4.7 μm]

Montatura (Mount): SkyWatcher NEQ6

Telescopio o obiettivo di guida (Guiding telescope or lens): Rifrattore acromatico SkyWatcher 102mm f/5

Camera di guida (Guiding camera): Magzero MZ-5m B/W [5.2 μm]

Riduttore di focale (Focal reducer): riduttore/spianatore 0.8x a quattro elementi (four elements 0.8x reducer/field flattener)

Software (Software): PixInsight + Adobe Photoshop CS6

Accessori (Accessories): non presente (not present)

Filtri (Filter):  2” IDAS LPS-D1

Risoluzione (Resolution): 4752 x 3168 (originale/original), 4770 x 3178 (finale/final)

Data (Date): 22/02/2015

Luogo (Location): Sormano – CO, Italia (Italy)

Pose (Frames): 9 x 600 sec at/a 400 ISO.

Calibrazione (Calibration): 4 dark, 53 bias, 51 flat

Fase lunare media (Average Moon phase): 20.6%

Campionamento (Pixel scale): 2.1758 arcsec/pixel

Focale equivalente (Equivalent focal lenght): 384 mm

M35 (NGC 2168) - 22/02/2015




NGC 2246 – 22/02/2015

Telescopio o obiettivo di acquisizione (Imaging telescope or lens): Rifrattore Tripletto APO FPL53 (APO reftactor triplet FPL53) Tecnosky 80mm f/6

Camera di acquisizione (Imaging camera): Canon EOS 500D (Rebel T1i) con filtro Baader (with Baader Filter) [4.7 μm]

Montatura (Mount): SkyWatcher NEQ6

Telescopio o obiettivo di guida (Guiding telescope or lens): Rifrattore acromatico SkyWatcher 102mm f/5

Camera di guida (Guiding camera): Magzero MZ-5m B/W [5.2 μm]

Riduttore di focale (Focal reducer): riduttore/spianatore 0.8x a quattro elementi (four elements 0.8x reducer/field flattener)

Software (Software): PixInsight + Adobe Photoshop CS6

Accessori (Accessories): non presente (not present)

Filtri (Filter):  2” IDAS LPS-D1

Risoluzione (Resolution): 4752 x 3168 (originale/original), 4770 x 3178 (finale/final)

Data (Date): 22/02/2015

Luogo (Location): Sormano – CO, Italia (Italy)

Pose (Frames): 4 x 600 sec at/a 400 ISO.

Calibrazione (Calibration): 4 dark, 53 bias, 51 flat

Fase lunare media (Average Moon phase): 20.6%

Campionamento (Pixel scale): 2.1758 arcsec/pixel

Focale equivalente (Equivalent focal lenght): 384 mm

NGC 2246 - 22/02/2015




Marzo 2015

Riportiamo gli scarti, le prove ed altro riferiti al mese di Marzo 2015 (per maggiori informazioni cliccare qui).

 

 

 

 

 

Nebulosa Rosetta (HaRGB) - 02/03/2015 (Ha) | 22/02/2015 (RGB)




Costruire un Power Box

L’astrofotografia moderna ci ha imposto una serie di strumenti altamente tecnologici e completamente automatizzati i quali però prevedono l’utilizzo di alimentazione elettrica esterna. In particolare, considerando un setup amatoriale di base, in termini di consumi abbiamo: computer portatile (2-5 A a seconda del modello: netbook o laptop), montatura equatoriale (1-2 A ad esempio per una SkyWatcher NEQ6), camera CCD (2 A ad esempio per una ATIK 383L+) , camera di guida (0.5 A circa) per non parlare di eventuali fasce anticondensa, focheggiatori automatici, ruota portafiltri e molto altro. Sommando ciascun termine si ottiene un valore di circa 5-8 A complessivi. Il mercato astronomico ci offre batterie (battery tank) di dimensioni variabili tra 7 e 17 Ah. Questo significa che a setup completo abbiamo un’autonomia di circa 1-2 ore. Considerando le lunghe e fredde notti d’inverno, rischiamo di rimanere senza corrente elettrica già prima di iniziare la sessione astrofotografica. Proprio per questo può essere utile autocostruirsi un alimentatore ad hoc con batterie di capacità superiore. In questo articolo vedremo come realizzarne una in grado di soddisfare tutte le nostre necessità. ASTROtrezzi non si assume nessuna responsabilità su eventuali danni o mal utilizzo conseguenti alla realizzazione dell’alimentatore qui descritto. Iniziamo con il dire che tutto quello che abbiamo bisogno è: una o più (nel modello qui descritto ne abbiamo utilizzate due da 50 Ah) batterie al piombo chiuse per automobili con capacità variabile tra 40 e 100 Ah. Una cassetta degli attrezzi in grado di sopportare il peso della/delle batteria/e. Noi ne abbiamo utilizzata una della Stanley, leggera e resistente. Dei cavi elettrici con spessore sufficiente per supportare la potenza di utilizzo e quella di ricarica della batteria. Una serie di porte accendisigari con corrispettivi fusibili con capacità adatta agli strumenti utilizzati (nel nostro caso abbiamo utilizzato fusibili da 5A). Uno stringicavo per idraulica (quello per vincolare la canna per giardini ai rubinetti) in metallo. Ovviamente avrete bisogno anche degli strumenti base per lavorare, ovvero: forbici, nastro adesivo per elettricisti, saldatore e stagno, tester, trapano (meglio se a colonna) ed infine cacciaviti, brugole e strumentame vario.

Iniziamo pertanto con il forare la nostra cassetta degli attrezzi in modo da poter fissare le porte accendisigaro come riportato in figura 1.

Figura 1: la posizione delle porte accendisigaro sulla cassetta degli attrezzi

 Una volta forata, ripulite la bava e fissate le porte accendisigari. Il numero di tali porte dipenderà dalle vostre necessità e dalla disponibilità di spazio. Nel nostro caso è stato necessario forare anche il vano portaoggetti in modo che ci sia la possibilità di far passare i cavi fino a raggiungere la batteria/ le batterie che si troveranno nel vano principale della cassetta degli attrezzi (vedi figura 2).

Figura 2: a sinistra l’installazione delle porte accendisigaro, a destra i fori passanti che permettono di collegare le porte alla batteria

Ora si può cominciare a saldare i cavi. Consiglio vivamente, per questione di ordine e sicurezza, di utilizzare due colori diversi per il polo positivo e negativo. Saldate i cavi relativi al polo positivo della batteria sul connettore della porta accendisigari con indicato il simbolo (+) e quelli relativi al polo negativo sull’altro connettore. In una posizione comoda del cavo relativo al polo positivo saldate il porta-fusibile. In ogni caso, consiglio invece della saldatura, l’utilizzo di comodi mammut. Inserire quindi il fusibile nel relativo porta-fusibile dopo averne verificato il funzionamento. Lasciate una porta accendisigari priva di fusibile. Questa vi servirà per caricare la batteria con caricabatterie esterne (utilizzate pure porte alternative all’accendisigari in funzione del cavo di ingresso dal caricabatterie). Il valore di corrente del fusibile deve essere scelto in funzione del carico che volete applicare. Nel nostro caso sono stati utilizzati fusibili da 10A. Un’immagine del sistema di connessioni è riportato in figura 3.

Figura 3: il sistema di cablaggio delle porte accendisigari con innesto degli opportuni fusibili.

A questo punto non vi resta che collegare tutti i cavi a polarità positiva al polo dello stesso segno della batteria (di solito coperto con un tappo, ricordate di rimuoverlo) e lo stesso con i cavi a polarità negativa. Ricordate prima di connettere il tutto di verificare con un tester che non vi siano dei corti circuito. Un corto con batterie di alta potenza potrebbero portare a scariche elettriche molto pericolose. Inoltre non toccate mai entrambe i poli della/e batteria/e al fine di evitare scariche elettriche anche mortali. Il sistema di connessioni alla batteria (nel caso in esame due batterie da 50Ah) è riportato in figura 4. Al fine di fissare i contatti con i poli della batteria consigliamo di utilizzare degli stringitubo idraulici in metallo.

Figura 4: connessioni con la/le batteria/e. Ricordatevi di fissare le batterie nella cassetta degli attrezzi.

Non ci resta quindi che chiudere la cassetta degli attrezzi assicurandone bene il serraggio (eventualmente fissando il tutto con viti passanti) e mettere il tutto sotto carica (Figura 5). Grazie a questo sistema ora avrete un’autonomia di parecchie ore da sfruttare nelle lunghe e fredde notti invernali: buon divertimento!

Figura 5: il power box completo.

 

 




NGC 4565 – 19/02/2015

Telescopio o obiettivo di acquisizione (Imaging telescope or lens): Ritchey-Chrétien GSO 203 mm f/8

Camera di acquisizione (Imaging camera): CCD Atik 383L+ B/W [5.4 μm] @ -12.0°C

Montatura (Mount): SkyWatcher AZ-EQ6

Telescopio o obiettivo di guida (Guiding telescope or lens): Rifrattore acromatico SkyWatcher 102mm f/5

Camera di guida (Guiding camera): Magzero MZ-5m B/W [5.2 μm]

Riduttore di focale (Focal reducer): non presenti (not present)

Software (Software): PixInsight 1.8 + Adobe Photoshop CS6

Accessori (Accessories): ruota portafiltri / filter wheel ATIK EFW2 USB

Filtri (Filter): 2” Astronomik CCD L, R, G, B

Risoluzione (Resolution): 3362 x 2504 (originale/original), 3362 x 2537 (finale/final)

Data (Date): 19/02/2014

Luogo (Location): Sormano – CO, Italia (Italy)

Pose (Frames): 5 x 600 sec bin 1×1 L, 3 x 500 sec bin 2×2 R, 3 x 500 sec bin 2×2 G, 3 x 500 sec bin 2×2 B

Calibrazione (Calibration): 10 x 600 sec bin 1×1 dark, 35 bias bin 1×1, 25 flat L, 10 x 500 sec bin 2×2 dark, 36 bias, 25 flat R, 25 flat G, 25 flat B

Fase lunare media (Average Moon phase): 1.3%

Campionamento (Pixel scale):  0.693058 arcsec/pixel

Focale equivalente (Equivalent focal lenght): 1624 mm

Note (note): Composizione LRGB / LRGB composition

NGC 4565 - 19/02/2015




Hickson Compact Group 44 – 19/02/2015

Telescopio o obiettivo di acquisizione (Imaging telescope or lens): Ritchey-Chrétien GSO 203 mm f/8

Camera di acquisizione (Imaging camera): CCD Atik 383L+ B/W [5.4 μm] @ -12.0°C

Montatura (Mount): SkyWatcher AZ-EQ6

Telescopio o obiettivo di guida (Guiding telescope or lens): Rifrattore acromatico SkyWatcher 102mm f/5

Camera di guida (Guiding camera): Magzero MZ-5m B/W [5.2 μm]

Riduttore di focale (Focal reducer): non presenti (not present)

Software (Software): PixInsight 1.8 + Adobe Photoshop CS6

Accessori (Accessories): ruota portafiltri / filter wheel ATIK EFW2 USB

Filtri (Filter): 2” Astronomik CCD L, R, G, B

Risoluzione (Resolution): 3362 x 2504 (originale/original), 3362 x 2537 (finale/final)

Data (Date): 19/02/2014

Luogo (Location): Sormano – CO, Italia (Italy)

Pose (Frames): 6 x 600 sec bin 1×1 L, 3 x 500 sec bin 2×2 R, 3 x 500 sec bin 2×2 G, 3 x 500 sec bin 2×2 B

Calibrazione (Calibration): 10 x 600 sec bin 1×1 dark, 35 bias bin 1×1, 25 flat L, 10 x 500 sec bin 2×2 dark, 36 bias, 25 flat R, 25 flat G, 25 flat B

Fase lunare media (Average Moon phase): 1.3%

Campionamento (Pixel scale):  0.693058 arcsec/pixel

Focale equivalente (Equivalent focal lenght): 1624 mm

Note (note): Composizione LRGB / LRGB composition

HCG44 - 19/02/2015




C/2014 Q2 (Lovejoy) – 23/01/2015

Telescopio o obiettivo di acquisizione (Imaging telescope or lens): Rifrattore ED (ED reftactor) Tecnosky Carbon Fiber 80mm f/7

Camera di acquisizione (Imaging camera): Canon EOS 500D (Rebel T1i) [4.7 μm]

Montatura (Mount): SkyWatcher NEQ6

Telescopio o obiettivo di guida (Guiding telescope or lens): Rifrattore Tripletto APO FPL53 (APO reftactor triplet FPL53) Tecnosky 80mm f/6

Camera di guida (Guiding camera): Magzero MZ-5m B/W [5.2 μm]

Riduttore di focale (Focal reducer): riduttore/spianatore 0.8x a quattro elementi (four elements 0.8x reducer/field flattener).

Software (Software): PixInsight + Adobe Photoshop CS6

Accessori (Accessories): non presente (not present)

Filtri (Filter):  2” IDAS LPS-D1

Risoluzione (Resolution): 4752 x 3168 (originale/original), 4770 x 3178 (finale/final)

Data (Date): 23/01/2015

Luogo (Location): Sormano – CO, Italia (Italy)

Pose (Frames): 39 x 240 sec at/a 1600 ISO.

Calibrazione (Calibration): 10 x 240 sec dark, 50 bias, 78 flat

Fase lunare media (Average Moon phase): 15.5 %

Campionamento (Pixel scale): 2.1758 arcsec/pixel

Focale equivalente (Equivalent focal lenght): 448 mm

Note (note): non presente (not present)

C/2014 Q2 (Lovejoy) - 23/01/2015 | stelle e cometa fisse

C/2014 Q2 (Lovejoy) - 23/01/2015 | stelle mosse e cometa fissa




montatura SkyWatcher EQ 3.2

In questo articolo andremo ad analizzare la montatura SkyWatcher EQ 3.2 acquistata da Ottica Miotti (Milano) il 31/10/2008 accoppiata al telescopio Newton 150 mm f/5. La montatura EQ3.2 ha una massima capacità di carico di 5.5 kg ed è motorizzata in entrambi gli assi. La versione originale non prevede la presenza di un cannocchiale polare che è pertanto stato acquistato separatamente. La montatura è equipaggiata di cavalletto in alluminio e aggancio fisso per barre Vixen. Due contrappesi da 5 e 2.5 kg sono forniti in dotazione. A questo abbiamo aggiunto un ulteriore contrappeso autocostruito da 5 kg circa. Con questa montatura è stato possibile inseguire manualmente un obiettivo Canon EF 70 – 300 mm f/4-5.6 IS USM a 300 mm montato in parallelo ad un telescopio rifrattore SkyWatcher 70 mm f/7 fino ad un massimo di 3 minuti (vedi figura 1). La montatura risulta nell’insieme robusta, leggera e comoda da trasportare. Negativo invece il giudizio sulla connessione telecomando di controllo e motori, effettuata con il classico plug da telefono il quale si è rivelato fragile, specialmente con le basse temperature. I movimenti sono risultati piuttosto “pastosi” conseguenza del grasso di medio-bassa qualità utilizzato per lubrificare la montatura. Intorno a -10°C l’inseguimento diviene problematico, sia a causa del grasso che delle batterie le quali cedono facilmente con le basse temperature. Il secondo rimane comunque un problema secondario dato che la montatura è alimentatile anche con un power tank o una batteria da auto opportunamente modificata.

Figura 1: M42 ripresa montatura EQ3.2 e Canon EF 70 – 300 mm f/4-5.6 IS USM + Canon EOS 40D non modificata in parallelo (testa Geoptik GK2) ad un telescopio rifrattore acromatico SkyWatcher 70 mm f/7. Somma di 10 pose da 120 secondi a 800 ISO (no calibrazione) - 13/02/2010, Piani di Artavaggio (LC)

Al fine di migliorarne le potenzialità si è quindi deciso di modificare la montatura applicando le modifiche descritte in seguito. ASTROtrezzi.it non è responsabile di qualsiasi comportamento da parte di persone terze o malfunzionamento dell’attrezzatura astronomica a seguito di eventuali modifiche qui suggerite. Inoltre consigliamo l’applicazione di tali modifiche a sole persone mediamente esperte in ambito meccanico ed elettronico.

AUTOGUIDA

Abbiamo voluto implementare alla nostra montatura SkyWatcher EQ3.2 la porta autoguida seguendo il kit di montaggio venduto dall’azienda Shoestring Astronomy. Questo consiste in una porta ST4 e manuale di istruzioni per un costo totale di circa 18 euro. La guida esaustiva, in lingua inglese, permette tramite poche saldature di aggiungere la porta autoguida al vostro telecomando di controllo della montatura. Il risultato finale della modifica è riportata in Figura 2. La porta ST4 permette infine di interfacciare la nostra montatura con camere di guida come la Magzero MZ-5m e software come PhD Guiding.

Figura 2: porta autoguida per montatura EQ.3.2

ADATTATORE ATTACCO VIXEN A LOSMANDY

Non sempre la EQ3.2 rappresenta la montatura del neofita. Alcuni astrofili ed astrofotografi semi-professionisti o professionisti apprezzano comunque questa montatura che appare nell’insieme robusta e allo stesso tempo leggera. Fino a pochi anni fa inoltre la EQ3.2, grazie alla sua trasportabilità, era una valida alternativa a quello che oggi sono gli astroinseguitori, diffusissimi oramai sul mercato astronomico e non solo. Nel caso in cui la EQ3.2 rappresenti una valida compagna della più evoluta NEQ6 o simili, potrebbe diventare problematico l’utilizzo della medesima strumentazione ottica. Infatti le montature semi-professionali e professionali utilizzano spesso code di rondini di tipo Losmandy. Queste sono molto più larghe e robuste di quelle Vixen e pertanto incompatibili con una montatura EQ3.2. Per ovviare a ciò abbiamo costruito un adattatore Vixen – Losmandy utilizzando una barra Vixen a cui abbiamo fissato due morsetti Losmandy recuperati da degli anelli decentrabili per telescopi di guida. Il risultato è mostrato in Figura 3.

Figura 3: adattatore Vixen - Losmandy per montatura EQ.3.2

Il prezzo della modifica si aggira intorno alle 100 euro (2 morsetti Losmandy + barra Vixen). Le richieste tecniche sono la capacità di effettuare fori e filettature. Consigliamo comunque di ungere con grasso spray le viti di serraggio dei morsetti Losmandy, spesso poco fluidi e capaci di bloccarsi a seguito di grandi sbalzi termici (tipici delle notti astronomiche invernali).

SOSTITUZIONE GRASSO MONTATURA

Questa ultima modifica, praticamente a costo zero (l’importante è l’acquisto di un buon grasso in grado di sopportare escursioni termiche elevate), permette di migliorare la fluidità della montatura grazie alla sostituzione del grasso originale.

Si parte con lo smontaggio dell’asse di declinazione (Figura 4). Per fare ciò si inizia con lo sganciare i motorini di inseguimento seguendo la procedura illustrata nel manuale utente allegato alla montatura (se lo avete perso basta svitare con una brugola i grani che tengono ancorato il motore alla montatura e alla vite senza fine).

La montatura SkyWatcher EQ3.2

Fatto ciò apriamo il tappo anteriore di protezione del mirino polare. Di fronte a noi si vedrà il perno dell’asta contrappesi. Smontiamo l’asta in modo da avere più spazio nella regione. A questo punto andiamo a smontare il grosso dado che tiene vincolato alla montatura l’asse di declinazione. Fatto questo l’asse si staccherà dalla montatura come mostrato in Figura 5.

Figura 5: asse di declinazione rimosso dalla sua sede. Si presti attenzione alla rimozione degli o-ring.

Si procede pertanto alla rimozione di tutti i pezzi, prestando attenzione a non perderne alcuno e soprattutto segnando l’ordine di smontaggio al fine di poterne effettuare successivamente il rimontaggio. Svitando con una brugola le due viti di accoppiamento vite senza fine – corona, è possibile rimuovere la prima e, una volta smontata può, insieme alla corona, essere pulita completamente dal grasso originale tramite lavaggio con diluente da carrozzeria (Figura 6).

Figura 6: estrazione della corona e della vite senza fine.

Una volta separati tutti i pezzi e puliti con diluente (tranne ovviamente le guarnizioni), procediamo con la lubrificazione del tutto utilizzando il nostro grasso di qualità. A questo punto rimontiamo l’asse di declinazione, così come è stato smontato. Ricordiamoci di stringere il dado di ancoraggio dell’asse di declinazione in modo che quest’ultimo risulti fluido. Il gioco da compiere è “al tatto” ma l’importante è che l’asse possa ruotare su se stesso e, una volta bloccato, non sia soggetto a troppi giochi. Lo stesso vale per la vite senza fine. L’accoppiamento con la corona può essere fatto agendo su due viti, anch’esse a brugola, posizionate nei pressi della vite senza fine. Usate quindi queste due più la vite centrale (che serve da controspinta) finché il movimento dell’ingranaggio, da effettuare a mano utilizzando la vite senza fine, risulti fluido. La regolazione della vite senza fine non va effettuata con i motori ma unicamente a mano. Questo perché il tatto è più sensibile agli sforzi del vostro motorino (che a lungo andare, se soggetto a troppi sforzi, potrebbe subire anche danni irreversibili!). La regolazione della vite senza fine è il processo più delicato ed importante e pertanto dedicategli il tempo necessario. Alla fine dovreste avere un asse di declinazione che ruota su se stesso come un’elica quando le frizioni sono lasciate molli e fluido (senza giochi) quando queste vengono serrate.

Una volta finito di operare sull’asse di declinazione, procediamo con l’asse A.R. o di ascensione retta. Questo può essere smontato iniziando a rimuovere il mirino polare seguendo le istruzioni riportate nel manuale utente (ovvero svitate il mirino polare…). Rimuovete anche le ghiere di ascensione retta arrivando ad un disco uniforme di alluminio illustrato in Figura 7.

Figura 7: il disco di alluminio che "chiude" l'asse A.R.

Al fine di rimuovere la ghiera di A.R. è stato necessario svitare la vite di serraggio della stessa. Attraverso il foro dedicato a questa vite è possibile, ruotando l’asse di ascensione retta, raggiungere tre grani nascosti situati lateralmente al disco di alluminio di Figura 7.  Svitateli in modo da poter rimuovere il disco come mostrato in Figura 8.

Figura 8: rimozione del disco di blocco dell'asse di ascensione retta.

Svitato il disco di alluminio è possibile rimuovere l’asse di A.R. dalla montatura e quindi tramite le appositi viti disaccoppiare la vite senza fine della corona. Anche in questo caso è necessario segnare con cura la posizione dei singoli pezzi, lavarli con diluente (tranne le guarnizioni) e ingrassare di nuovo il tutto con grasso di qualità. La vite senza fine e corona ripulita è mostrata in Figura 9.  Anche per l’asse di A.R. è importantissimo il serraggio della vite senza fine che va effettuato a motori smontati (a mano) e dovrà essere tale per cui l’asse risulti libero a frizioni libere e fluido (senza giochi) a frizioni bloccate.

Figura 9: vite senza fine e corona dell'asse di ascensione retta ripuliti dal grasso originale

Una volta rimontati gli assi e regolati con cura l’accoppiamento con le viti senza fine (ricordate, movimenti fluidi al tatto, senza giochi da effettuare con le due viti di fissaggio e quella centrale di controspinta), montate l’asta contrappesi e i motori seguendo sempre il manuale di istruzioni. L’operazione di sostituzione del grasso è un lavoro piuttosto lungo ed impegnativo e può durare complessivamente anche una decina di ore.

TEST SUL CAMPO

Una volta aggiunta la porta autoguida ST4, l’adattatore Vixen – Losmandy e cambiato il grasso della montatura abbiamo effettuato il test della stessa da Briosco (MB) il giorno 01/01/2015. Abbiamo pertanto montato un obiettivo zoom Canon EF 70 – 300 mm f/4-5.6 IS USM + Canon EOS 500D modificata Baader in parallelo (testa Geoptik GK2) ad un telescopio rifrattore acromatico SkyWatcher 70 mm f/7. La camera di guida utilizzata è una Magzero MZ-5m controllata dal software PhD guiding 2.0. La velocità di correzione sul telecomando è stata impostata a 8x, al fine di avere correzioni veloci sul backslash. Una volta collegata l’autoguida, questa ha funzionato correttamente mostrando un grafico regolare. Subito si è notato un errore periodico in declinazione piuttosto elevato come mostrato in Figura 10. Questo potrebbe essere dovuto ad un accoppiamento non ottimale vite senza fine – corona.

Figura 10: grafico di guida nei pressi dell'errore periodico della vite senza fine.

Malgrado ciò la guida automatica è risultata decisamente più comoda e confortevole di quella manuale utilizzata nel 2010 per la ripresa di M42 (Figura 1).  Grazie all’autoguida e alla manutenzione della meccanica la montatura EQ3.2 ha retto ben 300 secondi di posa a 300 mm, quasi raddoppiando il tempo massimo di esposizione ottenuto in passato. Pose a 540 e 900 secondi sono risultate leggermente mosse a causa, senza ombra di dubbio, dell’errore della vite senza fine. In Figura 11 riportiamo un esempio di posa a 240 secondi di esposizione.

Figura 11: esempio di scatto ripreso con montatura EQ3.2 e Canon EF 70 – 300 mm f/4-5.6 IS USM + Canon EOS 500D modificata Baader in parallelo (testa Geoptik GK2) ad un telescopio rifrattore acromatico SkyWatcher 70 mm f/7. Singola posa da 240 secondi a 100 ISO (no calibrazione) - 01/01/2015, Briosco (MB)